
WE CREATE MOTION

Library Manual

Communications API

MomanLib

EN

Imprint

2

Version:
2nd edition, 8.10.2022

Software status:
V2.0, according to "FAULHABER Motion Manager 6.9"

Copyright
by Dr. Fritz Faulhaber GmbH & Co. KG
Faulhaberstraße 1 · 71101 Schönaich

All rights reserved, including those to the translation.
No part of this description may be duplicated, reproduced,
stored in an information system or processed or
transferred in any other form without prior express written
permission of Dr. Fritz Faulhaber GmbH & Co. KG.

This document has been prepared with care.
Dr. Fritz Faulhaber GmbH & Co. KG cannot accept any
liability for any errors in this document or for the
consequences of such errors. Equally, no liability can be
accepted for direct or consequential damages resulting
from improper use of the equipment.

The relevant regulations regarding safety engineering
and interference suppression as well as the requirements
specified in this document are to be noted and followed
when using the software.

Subject to change without notice.

The respective current version of this technical manual is
available on FAULHABER's internet site:
www.faulhaber.com

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064

https://www.faulhaber.com

Content
1 About this document ... 5

1.1 Validity of this document .. 5

1.2 Associated documents .. 5

1.3 Symbols and designations .. 5

1.4 List of abbreviations ... 6

1.5 Legal notices ... 6

2 Description .. 7

2.1 Architecture .. 7

2.2 Files .. 8

3 Integration in the application ... 10

3.1 Typical call sequence .. 10

3.1.1 Synchronous communication ... 10
3.1.2 Asynchronous communication ... 11

3.2 C/C++ ... 12

3.3 Delphi .. 12

3.4 C# ... 13

3.5 LabVIEW .. 13

4 Examples ... 15

5 API documentation ... 16

5.1 General .. 16

5.2 Initialisation .. 17

5.2.1 InitInterface... 18
5.2.2 CloseInterface.. 19
5.2.3 OpenCom... 19
5.2.4 CloseCom ... 20
5.2.5 ScanNode... 20
5.2.6 LoadCommandSet... 21
5.2.7 SetDataCallback .. 22
5.2.8 SetTraceValuesCallback .. 22

5.3 Accessing the object dictionary ... 23

5.3.1 GetObj ... 23
5.3.2 GetInt64Obj... 24
5.3.3 GetStrObj... 25
5.3.4 SetObj .. 26
5.3.5 SetStrObj.. 27
5.3.6 SetObjTimeout .. 27
5.3.7 GetAbortMessage ... 28
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
3

Content
5.4 Advanced communication ... 28

5.4.1 SendMotionCommand.. 28
5.4.2 SendCommand .. 29
5.4.3 SendBuffer... 30
5.4.4 SendTelegram ... 31
5.4.5 WaitAnswer... 32
5.4.6 ReadAnswer .. 34
5.4.7 DecodeAnswStr ... 36
5.4.8 DecodeCmdStr... 37
5.4.9 CheckMotionCommand.. 38
5.4.10 CheckCommand .. 39
5.4.11 GetCommunicationHistory ... 40
5.4.12 GetSendTelegram ... 41
5.4.13 SetupMessageFilter ... 41

5.5 Data recording .. 42

5.5.1 SetupTrace... 42
5.5.2 RequestTrace ... 46

5.6 Connection settings .. 48

5.6.1 NetworkService ... 48
5.6.2 GetCommunicationSettings ... 49
5.6.3 ChangeNodeNr.. 49
5.6.4 ChangeBaudrate ... 50
5.6.5 Connect.. 50
5.6.6 FindConnection ... 51
5.6.7 UnconfiguredSlavesCount .. 51
5.6.8 SupportedBaudratesList ... 52

6 Ports and channels ... 53

6.1 EnumPorts ... 53

6.2 IsPortAvailable .. 54

7 Alternative programming possibilities ... 55

7.1 RS232 ... 55

7.1.1 C/C++.. 55
7.1.2 Delphi .. 55
7.1.3 C# ... 55
7.1.4 LabVIEW .. 55

7.2 USB .. 56

7.2.1 Virtual COM port under Windows 10.. 56
7.2.2 Using the Moman USB-DLL .. 56

7.3 CAN ... 56

8 Function overview .. 57

9 FAULHABER licence agreement ... 59
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
4

About this document
1 About this document

1.1 Validity of this document
This document describes the MomanLib application programming interface for program-
ming control software for FAULHABER Motion Controllers under Microsoft Windows.

This document is intended for trained programmers and computer scientists.

1.2 Associated documents
For the use of the API, additional information from the following manuals is useful:

These manuals can be downloaded in pdf format from the web page www.faulhaber.com/
manuals

.

1.3 Symbols and designations

 Pre-requirement for a requested action

1. First step for a requested action

 Result of a step

2. Second step of a requested action

 Result of an action

 Request for a single-step action

Manual Description

Motion Manager 6 Operating instructions for FAULHABER Motion Manager PC software

Communications manual Description of communication with the drive

Drive functions Description of the operating modes and functions of the drive

Instructions for understanding or optimizing the operational procedures
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
5

https://www.faulhaber.com/de/support/bedienungsanleitungen#
https://www.faulhaber.com/de/support/bedienungsanleitungen#

About this document
1.4 List of abbreviations

1.5 Legal notices

Copyrights
All rights reserved.

Industrial property rights
In publishing the Motion Manager Library Dr. Fritz Faulhaber & Co. KG does not expressly
or implicitly grant any rights in industrial property rights on which the applications and
functions of the Motion Manager Library described are directly or indirectly based, nor does
it transfer rights of use in such industrial property rights.

Not a constituent part of contract; non-binding character of the Motion Manager Library
Unless otherwise stated the Motion Manager Library is not a constituent part of contracts
concluded by Dr. Fritz Faulhaber & Co. KG. The Motion Manager Library is a non-binding
description of a possible application example. In particular Dr. Fritz Faulhaber & Co. KG
does not guarantee and makes no representation that the processes and functions illus-
trated in the Motion Manager Library can always be executed and implemented as
described and that they can be used in other contexts and environments with the same
result without additional tests or modifications.

No liability
Owing to the non-binding character of the Motion Manager Library Dr. Fritz Faulhaber &
Co. KG will not accept any liability for losses arising in connection with it.

Changes in the Motion Manager Library
The Motion Manager Library is subject to changes. The current version of this Motion
Manager Library may be obtained from Dr. Fritz Faulhaber & Co. KG by calling +49 7031 638
688 or sending an e-mail to mcsupport@faulhaber.de.

Abbreviation Meaning

API Application Programming Interface

CAN Controller Area Network

CiA CAN in Automation e.V.

COM Serial RS232 interface

DLL Dynamic Link Library

MC Motion Controller

NMT CANopen network management

OD Object dictionary

PC Personal Computer

USB Universal Serial Bus
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
6

Description
2 Description
The MomanLib API makes a uniform function interface available for communicating with
FAULHABER Motion Controllers via different interfaces (USB, RS232, CAN).

The API can be used to program 32-bit control software under Microsoft Windows with a
programming language selected by the developer (e.g. C++, C#, Delphi, LabVIEW).

The API functions are written in C++. To use with other programming languages, the API
functions must be integrated using appropriate wrapper functions. Examples are provided
for common programming languages.

2.1 Architecture

Fig. 1: Architecture of the API

The two-layer plug-in architecture permits the support of different communication proto-
cols and interface cards for the RS232, USB and CAN interface.

Each layer is represented by a DLL file, a protocol DLL and an interface DLL. Communication
between the layers takes place via a defined function interface.

32 bit windows application

CO_USB CO_CAN DP_CAN CO_RS232 MC2RS

MC3USB Peak_pcan IXXAT_VCI3 Mocom

MC3
USB driver

PeakPCAN
basic driver

IXXAT
VCI3 driver

Com
driver

USB
interface

PEAK CAN
interface

IXXAT CAN
interface

RS232
interface

Protocol layer
with command
interpreter

Interface layer
for the
connection to
the hardware

Hardware

Interface
driver
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
7

Description
2.2 Files
The files needed for using the API are contained in this packet in subdirectory \Moman-
Lib\Lib\Bin. The Bin directory contains the \Protocol and \Interface subdirectories, each of
which contains the respective subdirectories for the supported interfaces with the corre-
sponding DLL files:

Two DLL files are always needed:

 Protocol DLL

 Interface DLL

Depending on the type of protocol and interface, different DLL files are available:

Tab. 1: Protocol DLL

Tab. 2: Interface DLL

To use the API in your own programs, it is recommended that the required files be cop-
ied to a separate project directory and used from there.

Interface Protocol DLL Meaning

RS232 MC2RS Serial protocol for Motion Controllers of the family MC V2.x

CO_RS232 CO protocol via RS232 for Motion Controllers of the family MC V3.x

CAN CO_CAN Standard CANopen-Protocol via CAN

USB CO_USB CO protocol via USB for Motion Controllers of the family MC V3.x

Interface Interface DLL Function

RS232 Mocom.dll Connection to standard serial COM port

CAN Ixxat_vci3.dll Connection to HMS-IXXAT VCI3- / VCI4 driver

Peak_pcan.dll Connection to PEAK PCAN driver

Ems_cpc.dll Connection to EMS CPC driver

Esd_ntcan.dll Connection to ESD NTCAN driver

… Other CAN interface DLLs if necessary

USB MC3Usb.dll Connection to FAULHABER MC V3.x USB driver

Lib
Bin

Interface

Protocol

CAN
COM
USB

CAN
COM
USB

MomanLib
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
8

Description
USB
The driver for accessing the FAULHABER Motion Controllers of the family MC V3.x is
installed with Motion Manager 6.

RS232
When using a serial interface installed in a PC, no other drivers are needed. If a USB to serial
adapter is used, it is generally necessary to install the supplied driver. The adapter then
appears as a virtual COM port, the port number of which can be found in the Windows
Device Manager (e.g., COM5).

CAN
The driver of the used CAN interface card appropriate for the selected interface DLL must
be installed separately. Currently supported are interface cards from the manufacturers
listed in Tab. 2. CAN interface cards from other manufacturers can be used if an interface
DLL exists for the given card. Inquire with FAULHABER for further information.

For some interfaces an additional DLL is needed in the application directory, e.g. for PEAK
the PCANBasic.dll. You can find the additional DLL files in the folder \Examples\Win32\Com-
mon.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
9

Integration in the application
3 Integration in the application
The protocol DLL can be integrated statically or dynamically in Windows applications that
were developed with Win32 development tools (e.g. C/C++, Delphi, Visual Basic, LabVIEW).

The desired DLL files (protocol DLL and interface DLL) must be copied to the project direc-
tory or a suitable subdirectory.

In addition, the functions that are to be used, which are defined in C header file Moman-
prot.h, must be made known to the application. To use these functions, the definitions
from file Momancmd.h are needed, which must likewise be made known to the applica-
tion. The C header files are located in directory \MomanLib\Lib\Include.

The desired interface DLL must first be initialized in the program via the mmProtInitInt-
erface() function. Afterwards, the interface can be opened, commands sent and answers
read. Lastly, the interfaces must be closed again.

3.1 Typical call sequence

3.1.1 Synchronous communication

1. Initialisation

Connection to a Motion Controller of the family MC V3.x via USB:

mmProtInitInterface("MC3Usb.dll", NULL, NULL);

mmProtOpenCom(1, 0, 0);

2. Data exchange

Read "Device Name" parameter of node 1:

const char* answData = NULL;
mmProtGetStrObj(1, 0x1008, 0x00, &answData);

3. Close interfaces:

mmProtCloseCom();

mmProtCloseInterface();
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
10

Integration in the application
3.1.2 Asynchronous communication

1. Initialisation

Connection to a Motion Controller of the family MC V3.x via an HMS-IXXAT-CAN card
with 250 kBit/s:

mmProtInitInterface("Ixxat_vci3.dll", &CBDataReceived, NULL);

mmProtOpenCom(1, 0, 250000);

hReceiveEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

2. Data exchange

Switch node 1 to the "Operation Enabled" state and receive data asynchronously:

mmProtSendCommand(1, 0x0000, eMomancmd_start, 0, 0);

mmProtSendCommand(1, 0x0000, eMomancmd_shutdown, 0, 0);

mmProtSendCommand(1, 0x0000, eMomancmd_switchon, 0, 0);

mmProtSendCommand(1, 0x0000, eMomancmd_EnOp, 0, 0);

// Callback function for the signalling of data reception:
void CBDataReceived(void)
{

SetEvent(hReceiveEvent);

}

3. Read data (here in a separate thread with event signalling):

if (WaitForSingleObject(hReceiveEvent, INFINITE) == WAIT_OBJECT_0)

{

const char* answData = NULL;

const char* cmdString = NULL;

const char* receiveTelegram = NULL;

int nodeNr;

mmProtReadAnswer(&answData, nodeNr, &cmdString, &receiveTelegram);

}

4. Close interfaces:

mmProtCloseCom();

mmProtCloseInterface();

CloseHandle(hReceiveEvent);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
11

Integration in the application
3.2 C/C++
For the static integration, a suitable import library of the protocol DLL (*.lib) must be added
to the project. Because the import libraries differ in format depending on the used devel-
opment environment, this method is not used in the examples. For some development envi-
ronments, there is a tool for creating an import library from a DLL (see documentation of
the used development environment).

For dynamic integration, the Win32 function LoadLibrary() must first be used to load the
desired protocol DLL and then each function that is to be used given an equivalent function
name via GetProcAddress(). At the end of use, the DLL must again be removed from
memory using FreeLibrary().

To access the DLL functions, the header files Momanprot.h and Momancmd.h must be cop-
ied to the project directory and added to the source text file with #include.

Example (\MomanLib\Examples\Source\C++)
 \Common\MomanLibSample

Shows the dynamic integration of the library in a standard C++ program and the use of
individual functions

 \C++Builder\DemoVCL

C++ Builder project for Embarcadero RAD Studio 10 with VCL user interface for the use
of MomanLibSample

 \Visual C++\DemoVCPP

Visual C++ project for Microsoft Visual Studio 2012 with "Windows Forms" user inter-
face for the use of MomanLibSample

3.3 Delphi
For the static integration, the DLL functions to be used must be declared as external in the
source text file with the stdcall calling convention. This preferred method is also used in
the example.

The library can also be loaded dynamically via Win32 function LoadLibrary(). The func-
tions are then integrated as with C++ via GetProcAddress().

To use the DLL functions, some definitions are needed from the Momancmd.h file and must
be specified in the source text file as type. When using callback functions (asynchronous
communication), note that they must be declared with the calling convention CDECL.

Example (\MomanLib\Examples\Source\Delphi)
 \MomanLibSample

Shows the static integration and use of individual functions of the library in a Delphi
program

 \Demo

Delphi project for Embarcadero RAD Studio 10 with VCL user interface for the use of
MomanLibSample
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
12

Integration in the application
3.4 C#
For the connection, a wrapper class must be created with the DllImport references to the
required functions of the specified DLL. CallingConvention=CallingConvention.Std-
Call must be specified as the calling convention.

To use the DLL functions, some definitions are needed from the Momancmd.h file and must
be specified in the source text file. When using callback functions (asynchronous communi-
cation), note that they must be declared with the calling convention CDECL.

Example (\MomanLib\Examples\Source\C#)
 \MomanLibSample

Shows the integration and use of individual functions of the library in a C# program

 \DemoCSharp

C# project for Microsoft Visual Studio 2012 with "Windows Forms" user interface for
the use of MomanLibSample

3.5 LabVIEW
For integration, the path of the DLL file must be specified in "Call Library Function Node"
and the DLL function that is to be used selected and configured. stdcall must be specified
as the calling convention.

To use these functions, "Specify path on diagram" must be selected. In addition, a number
of definitions from file Momancmd.h must be specified. When using callback functions
(asynchronous communication), note that they must be declared with the calling conven-
tion CDECL.

When using the automatic import function, it must be ensured that the import declarations
are imported correctly. An option is to reliably capture the corresponding return values.

Fig. 2: Initialisation with wrapper component
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
13

Integration in the application
Fig. 3: Implementation of a wrapper component

In this example, asynchronous communication (see chap. 3.1.2, p. 11) is only prepared. For
use with LabView, an extension of the API interface is necessary.

Example (\MomanLib\Examples\Source\Labview)
 Project for LabView 2015 with user interface and main loop

 \Typedefinition

Definitions of used API parameters

 \SubVIs

 \Object-convert.vi, \Command_format_WRITE.vi

Preformatting of the API parameters

 \mmProt___.vi

Wrappers for each "Call Library Function Node" function block

 \Async___.vi, \.NET_Init.vi

Preparations for the use of the asynchronous function
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
14

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064

Examples

15

4 Examples
Simple examples are available for the programming languages listed in chap. 3, p. 10.

The source code for the individual programming languages can be found in subfolder
\Examples\Source. The underlying C-header files can be found in \Lib\Include. For some pro-
gramming languages, there is a file called MomanLibSample, which loads the communica-
tion DLLs and encapsulates access to the API functions in appropriate wrapper functions. In
addition, the required definitions are implemented here from the Momancmd.h file for
programming languages other than C/C++.

Located in subfolder \Examples\Win32 are the executable EXE files produced with the
respective programming languages; these EXE files use the communication DLLs in folder
\Lib\Bin.

The examples illustrate the following aspects:

 Synchronous access to objects in the object dictionary

 Operation of the device-control state machine with asynchronous data reception

 Execution of relative positioning

All examples use USB as communication interface to a Motion Controller of the family V3.x.
To execute the examples, a USB connection must be established to a Motion Controller of
the family V3.x. If the connection is to be established via a different interface, the necessary
protocol and interface DLLs must be assigned the respective constants in the source code.

The examples are structured so as to be easy to understand. To facilitate better reada-
bility of the code, the examples do not include adequate error handling and other
modularisation. The examples should be adapted to your software structure prior to
use.

Before executing an example program, the Motion Controller must be adapted to the
connected motor via the Motion Manager.

API documentation
5 API documentation
The protocol DLL contains the interface to the application. This is also used to initialise the
interface DLL.

5.1 General
In the Momancmd.h file, several enumerators and structures are defined that are used as
return or transfer parameters of a number of functions.

The function description specifies which enumerators and structures the respective func-
tions use. This file can be integrated directly in C/C++ programs with #include. For other
programming languages, the used enumerators and structures must be made known
accordingly.

The API definition for the C/C++ programming language is stored in the Momanprot.h file.

Some functions expect a double pointer const char** as transfer parameter. This pointer
allows strings whose memory is managed in the protocol layer to be read out. For the fur-
ther processing of these strings, the referenced memory area must be copied to a suitable
string variable immediately after calling the function.

Examples

C++: Function parameter defined as (const char** data)

Function call:

const char* data = NULL;
DoSomething(&data);

if (data != NULL) {

std::string s = data;

}

C#: Function parameter defined as (out IntPtr data)

Function call:

IntPtr data = IntPtr.Zero;

DoSomething(out data);

if (data != IntPtr.Zero) {

string s = Marshal.PtrToStringAnsi(data)
}

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
16

API documentation
5.2 Initialisation
The initialisation functions are necessary for establishing a connection between PC software
and the Motion Controller.

Delphi: Function parameter defined as (data: PAnsiChar)

Function call:

s: String;

data: PAnsiChar;

data := nil;
DoSomething(@data);

if data <> nil then begin
s = String(data)

end;

LabVIEW: Function parameter defined as (uintptr_t *data)

Function call ("Call Library Function Node"):

GetValueByPointer VI
Type: Numeric
Datatype: unsigned Pointer-sized Integer
Pass: Pointer to Value

The Motion Manager API generally uses 8-bit ANSI strings. To use Unicode strings,
appropriate conversions must be performed.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
17

API documentation
5.2.1 InitInterface

Initialisation of the interface connection.

Parameter

Return data

To use the callback functions, the respective function pointers must be declared:

Example

eMomanprot mmProtInitInterface (char* InterfaceDll,

tdmmDataCallback DataReceived,

tdmmTraceValuesCallback TraceValuesReceived

)

[in]InterfaceDll File name of the interface DLL with path

[in]DataReceived Callback function that is called when data are received. The
received data must then be read out via the ReadAnswer func-
tion.

ZERO, if asynchronous data reception is not used.

[in]TraceValuesReceived Callback function that is called following analysis of received
trace data and which passes the trace data.

ZERO, if the trace function is not used.

eMomanprot_ok Interface DLL successfully initialised

eMomanprot_error Error when loading the interface DLL

typedef void (*tdmmProtDataCallback)(void);
typedef void (*tdmmProtTraceValuesCallback)(int nodeNr,

unsigned int value[], int timecode);

These callback functions are called in the receive thread. Thus, processing operations
that are relatively long may not be performed here.

The callback functions serve only to signal data reception. The further processing of
the received data, which is cached in the protocol layer, should occur in another thread
(e.g., the main thread of the application).

tdmmProtDataCallback DataReceived;

tdmmProtTraceValuesCallback TraceValuesReceived;

std::string InterfaceDll = "Ixxat_vci3.dll";
eMomanprot ret = mmProtInitInterface((char*)InterfaceDll.c_str(),

DataReceived, TraceValuesReceived);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
18

API documentation
5.2.2 CloseInterface

void mmProtCloseInterface (void)
Close interface connection and release memory.

5.2.3 OpenCom

Open interfaces.

Parameter

Return data

See chap. 6.1, p. 53 for determining the available ports and channels.

See chap. 5.6.8, p. 52 for determining the supported baud rates.

Example
Open first MC V3.x USB port:

eMomanprot ret = mmProtOpenCom(1, 0, 0);

eMomanprot mmProtOpenCom (int port,

int channel,

int baud

)

[in]port Port number

COM: 0

USB: Sequential beginning with 1 for each USB device on the selected inter-
face

CAN: Sequential beginning with 1 for each CAN card on the selected inter-
face

[in]channel Channel number

COM: COM number, e.g. 8 for COM8

USB: 0

CAN: 0 for port with just one channel, otherwise sequential beginning with 1

[in]baud Baud rate in bit/s

COM: e.g. 9600

USB: 0

CAN: e.g. 250000

eMomanprot_ok Interface successfully opened

eMomanprot_error Error when opening the interface
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
19

API documentation
5.2.4 CloseCom

void mmProtCloseCom (void)
Close interface.

5.2.5 ScanNode

Find network nodes.

Parameter

Return data

A check is performed to determine whether a node exists with the specified node number.
If only one node with an unknown node number is connected, the node number can also
be determined via a broadcast call.

Example

int mmProtScanNode (int nodeNr,

const char** deviceName,

int& deviceMode

)

[in] nodeNr Node number

–1: Broadcast

[out] deviceName Read device name

[out] deviceMode eDeviceMode device property

eDeviceMode_Faulhaber FAULHABER drive

eDeviceMode_Bootloader FAULHABER drive in bootloader mode

eDeviceMode_AnyDrive Non-FAULHABER drive

eDeviceMode_AnyDevice Other device, not a drive

≥0 Node number, if node was found

–1 No node found under the specified node number

std::string deviceName;

int deviceMode;

const char* name = NULL;
int foundNodeNr = mmProtScanNode (-1, &name, deviceMode);

if (name != NULL) deviceName = name;
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
20

API documentation
5.2.6 LoadCommandSet

int mmProtLoadCommandSet (int cmdType)
 Load command set of a CAN device type, provided it is not an MC V3.x.

 Read currently loaded command set (eCmdType_LoadedCommandSet).

Parameter

Return data

[in]cmdType Number of the device type command set (eCmdType):

eCmdType_LoadedCommandSet Read loaded command set

eCmdType_Default Load command set MC V3.x

eCmdType_MC3 Load command set MC V3.x

eCmdType_CO Load command set MC V2.x CO

eCmdType_CF Load command set MC V2.x CF

eCommandSet_invalidCmdType Invalid transfer parameter

eCommandSet_Unknown Unknown command set

eCommandSet_MC3RS MC V3.x RS232 command set

eCommandSet_MC3USB MC V3.x USB command set

eCommandSet_MC3CAN MC V3.x CAN command set

eCommandSet_MC2RS MC V2.x RS command set

eCommandSet_MC2CAN MC V2.x CAN command set
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
21

API documentation
5.2.7 SetDataCallback

void mmProtSetDataCallback (tdmmProtDataCallback DataReceived)
Set callback function for signalling data received asynchronously; alternative to specifying
for InitInterface. A callback function can hereby be set or deleted at any point in time
independent of the initialisation of the interface.

Parameter

To use the callback function, a corresponding function pointer must be declared:

5.2.8 SetTraceValuesCallback

void mmProtSetTraceValuesCallback (tdmmProtTraceValuesCallback TraceValues-
Received)
Set callback function for signalling trace data received asynchronously; alternative to speci-
fying for InitInterface. A callback function can hereby be set or deleted at any point in
time independent of the initialisation of the interface.

Parameter

To use the callback function, a corresponding function pointer must be declared:

[in]DataReceived Callback function that is called when data are received. The received
data must then be read out via the ReadAnswer function.

ZERO, if asynchronous data reception is to be switched off.

typedef void (*tdmmProtDataCallback)(void);

This callback function is called in the receive thread. Thus, processing operations that
are relatively long may not be performed here.

The callback function serves only to signal data reception. The further processing of
the subsequently read data should occur in another thread (e.g., the main thread of
the application).

[in]TraceValuesReceived Callback function that is called following analysis of received
trace data and which passes the trace data.

ZERO if the trace function is to be switched off.

typedef void (*tdmmProtTraceValuesCallback)(int nodeNr,

unsigned int value[], int timecode);

This callback function is called in the receive thread. Thus, processing operations that
are relatively long may not be performed here.

The further processing of the received data should occur in another thread (e.g., the
main thread of the application).
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
22

API documentation
5.3 Accessing the object dictionary
The functions for accessing the object dictionary offer simple methods for synchronously
reading and writing objects. These methods are not supported by Motion Controllers of the
family MC V2.x RS.

The values to be passed for index, subindex and len can be determined in the following
ways:

 From the Communications Manual or the Functional Manual of the respective Motion
Controller

 Via the Motion Manager:

All objects supported by the device are listed in the object browser of the Motion
Manager. The value range and the data type for the len parameter of the selected
object can be read from the corresponding status bar.

The command sequence, which must be sent for specific actions, can be found in the
recording in the terminal log of the Motion Cockpit.

5.3.1 GetObj

Read integer object entry from object dictionary.

Parameter

Return data

int mmProtGetObj (int nodeNr,

int index,

int subIndex,

int& value
)

[in]nodeNr Node number

[in]index Index of the object

[in]subIndex Subindex of the object

[in]value Read integer value

eMomanprot_ok Answer successfully received

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device → CiA error code is returned via
value

eMomanprot_error Other error
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
23

API documentation
Example
Query actual position of node 1:

5.3.2 GetInt64Obj

Objects that are linked to a Momancmd are read out from the object dictionary as 64-bit
integers. It is thereby possible to distinguish between unsigned int32 and signed int32.
All other objects are returned as signed int32, analogous to GetObj.

Parameter

Return data

int value;

eMomanprot ret = mmProtGetObj (1, 0x6064, 0x00, value);

int mmProtGetInt64Obj (int nodeNr,

int index,

int subIndex,

_int64& value

)

[in] nodeNr Node number

[in] index Index of the object

[in] subIndex Subindex of the object

[out] value Read value as Int64

eMomanprot_ok Answer successfully received

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device → CiA error code is returned via
value

eMomanprot_error Other error
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
24

API documentation
5.3.3 GetStrObj

Read string object entry from object dictionary.

Parameter

Return data

Example
Query software version of node 1:

int mmProtGetStrObj (int nodeNr,

int index,

int subIndex,

const char** value

)

[in] nodeNr Node number

[in] index Index of the object

[in] subIndex Subindex of the object

[out] value Read string value

eMomanprot_ok Answer successfully received

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device → CiA error code returned via
value as hexadecimal value

eMomanprot_error Other error

std::string version;

const char* ver = NULL;
eMomanprot ret = mmProtGetStrObj (1, 0x100A, 0x00, &ver);

if (ver != NULL) version = ver;
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
25

API documentation
5.3.4 SetObj

Write integer object entry in the object dictionary.

Parameter

Return data

Example
Target position = preset 1000 for node 1:

int mmProtSetObj (int nodeNr,

int index,

int subIndex,

int value,

int len,

unsigned int& abortCode

)

[in] nodeNr Node number

[in] index Index of the object

[in] subIndex Subindex of the object

[in] value New value

[in] len Data length of the object entry in bytes

[out] abortCode CiA error code for eMomanprot_error_cmd

eMomanprot_ok Value successfully transferred

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device

eMomanprot_error Other error

unsigned int abortCode;

eMomanprot ret = mmProtSetObj (1, 0x607A, 0x00, 1000, 4, abortCode);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
26

API documentation
5.3.5 SetStrObj

Write string object entry in object dictionary.

Parameter

Return data

5.3.6 SetObjTimeout

void mmProtSetObjTimeout (int timeout)
For object queries: set timeout for commands that require a longer execution time
(e.g., save, restore or reset). The timeout value is set to 500 ms by default.

Parameter

int mmProtSetStrObj (int nodeNr,

int index,

int subIndex,

char* value,

unsigned int& abortCode

)

[in] nodeNr Node number

[in] index Index of the object

[in] subIndex Subindex of the object

[in] value New value

[out] abortCode CiA error code for eMomanprot_error_cmd

eMomanprot_ok Value successfully transferred

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device

eMomanprot_error Other error

[in]timeout ≥500: timeout value in ms

<500: default value (500 ms)
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
27

API documentation
5.3.7 GetAbortMessage

const char* mmProtGetAbortMessage (unsigned int abortCode)
Read out error message text of the passed abort code.

Parameter

Return data
Text of the abort message

5.4 Advanced communication
The advanced communication functions are available for commands without object diction-
ary and for asynchronous data reception. In addition, functions exist for the analysis of
communication data, for evaluating the communication history and for setting a CAN
message filter.

5.4.1 SendMotionCommand

Send ASCII motion command.

Parameter

Return data

The commands listed in the Motion Manager command reference can be used as ASCII com-
mands.

For Motion Controllers of the family MC V2.x with an RS interface, all commands listed in
the Functional Manual of the respective control can be used; these are sent directly to the
drive control. These commands can also be used for Motion Controllers of the family
MC V2.x with a CF interface, in which case they are sent via a CAN telegram.

The program does not wait for an answer. The WaitAnswer function is available for this
purpose. If a DataReceived callback function is specified for InitInterface and an answer
is received asynchronously, the DataReceived callback function is called. The answer can
then be read using ReadAnswer.

[in]abortCode Error code

bool mmProtSendMotionCommand (char* cmd,

int nodeNr

)

[in]cmd ASCII command

[in]nodeNr Node number, if not contained in the command

true Command sent successfully

false Error when sending
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
28

API documentation
5.4.2 SendCommand

Send object command.

Parameter

Return data

This function can be used to read or write parameters in the object dictionary without wait-
ing for the answer. The answer can be read by subsequently calling WaitAnswer
(e.g., reading a data buffer). If a DataReceived callback function is specified for InitInter-
face and an answer is received asynchronously, the DataReceived callback function is
called. The answer can then be read using ReadAnswer.

In addition to the objects defined in the device, special Motion Manager commands are
available at index 0x0000 that can be used for standard tasks, NMT and Device Control (see
enum eMomancmd in Momancmd.h).

bool mmProtSendCommand (int nodeNr,

int index,

int subIndex,

int dataLen,

int data

)

[in]nodeNr Node number

[in]index Index of the data object

[in]subIndex Subindex of the data object

[in]dataLen Data length and command type:

0: Query command for standard objects (SDO Upload) or Motion
Manager command without data (e.g., NMT, Device Control)

–1: Query command for long objects (segmented SDO Upload)

1…4: Send command for standard objects (SDO Download)

>4: Send command for long objects (segmented SDO Download)

[in]data Data value to be sent or pointer to data block

0, when dataLen = 0

true Command sent successfully

false Error when sending

The functions in chap. 5.3, p. 23 are available for synchronously reading and writing
objects. To send data buffer objects, the SendBuffer function should be used.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
29

API documentation
5.4.3 SendBuffer

Send buffer content or string via object command.

Parameter

Return data

This function can be used to write string and data buffer objects in the object dictionary.

If the function call fails, error code and error text can be read out via WaitAnswer if neces-
sary.

bool mmProtSendBuffer (int nodeNr,

int index,

int subIndex,

int dataLen,

char* dataBuffer

)

[in]nodeNr Node number

[in]index Index of the data object

[in]subIndex Subindex of the data object

[in]dataLen Data length in bytes

[in]dataBuffer Pointer to the data block that is to be sent

true Command sent successfully

false Error when sending
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
30

API documentation
5.4.4 SendTelegram

Send any telegram.

The specified data are sent directly to the specified COB-ID (CAN) or node number (RS232,
USB). The telegram structure is described in the Communications Manual.

Is not supported by Motion Controllers of the family MC V2.x RS.

Parameter

Return data

bool mmProtSendTelegram (int id,

char* data,

int len

)

[in]id COB-ID or node number

[in]data Data field

[in]len Length of the data field

true Telegram sent successfully

false Error when sending
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
31

API documentation
5.4.5 WaitAnswer

Wait for answer from device.

Parameter

Return data

This function is available for synchronous communication with the SendMotionCommand,
SendCommand and SendBuffer functions.

eMomanprot mmProtWaitAnswer (int timeout,

int answ,

const char** answData

)

[in] timeout Timeout time in ms

[in] answ Answer mode (eWaitMode)

[out] answData Answer to previously sent command

If eMomanprot_error_cmd is returned, answData contains an error
text.

eMomanprot_ok Answer successfully received

eMomanprot_error_timeout No response

eMomanprot_error_cmd Error message from device

eMomanprot_error_param Invalid transfer parameter

eMomanprot_error Other error

>4 Length of the received binary data packet
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
32

API documentation
Transfer parameter answ can contain one of the following values:

Example
Read actual position of an MC V2.x:

eWaitMode_Int Waiting for an integer answer

eWaitMode_String Waiting for a string answer

eWaitMode_BinData Waiting for a binary data buffer > 4 bytes

eWaitMode_noAsync_noAck Waiting for MC V2.x RS answer without async. and ack.

eWaitMode_noAck Waiting for MC V2.x RS answer without acknowledge

eWaitMode_noAsync Waiting for MC V2.x RS answer without async.

eWaitMode_someAsync Waiting for MC V2.x RS answer with specific async.

eWaitMode_Bin Waiting for MC V2.x RS binary answer

When waiting for trace data, 9 bytes are always returned:
the first 4 bytes for trace parameter 1, the next 4 bytes for
trace parameter 2, followed by 1 byte for the timecode.

>eWaitMode_Id Waiting for answer with specific identifier (COB-ID)

std::string position;

if (mmProtSendMotionCommand ("POS", 0) == true) {

const char* data = NULL;
eMomanprot ret = mmProtWaitAnswer (1000, eWaitMode_String, data);

if (data != NULL) position = data;

}

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
33

API documentation
5.4.6 ReadAnswer

Read received messages.

Following a receipt notification (DataReceived callback), this can be used to read out the
messages cached in the ring buffer.

Parameter

Return data

The received data can be further examined via the DecodeAnswStr and DecodeCmdStr aux-
iliary functions.

eMomanprot mmProtReadAnswer (const char** answData,

int& nodeNr,

const char** cmdString,

const char** receiveTelegram

)

[out] answData Answer data interpreted as string

[out] nodeNr Node number of the received message

[out] cmdString Corresponding command string

[out] receiveTelegram Receive telegram

eMomanprot_ok Answer successfully received

eMomanprot_error_cmd Error message from device

eMomanprot_error_emcy Emergency error from device

eMomanprot_error Other error

eMomanprot_noData No data available for reading

ReadAnswer should not be called directly within the DataReceived callback function as
this would slow the receive thread.

The signalling of data reception and reading of the data must be decoupled from one
another. To decouple, ReadAnswer can be called, e.g., in a separate thread (event sig-
nalling), in a Windows message handler (signalling via PostMessage) or within a timer
event.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
34

API documentation
Example

std::string data, cmd;

int statusword;

const char* answData = NULL;
const char* cmdString = NULL;
const char* receiveTelegram = NULL;
int nodeNr;

eMomanprot ret = mmProtReadAnswer (&answData, nodeNr, &cmdString, &receiveTele-
gram);

if (ret != eMomanprot_noData) {

if (answData != NULL) data = answData;

if (cmdString != NULL) cmd = cmdString;

_int64 value;

if (mmProtDecodeAnswStr (answData, value) == eDecoded_Statusword) {

statusword = (int)value;

}

}

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
35

API documentation
5.4.7 DecodeAnswStr

Decode the passed ReadAnswer answer string according to specific properties.

Parameter

Return data

eDecoded mmProtDecodeAnswStr (const char** answStr,

_int64& value

)

[in] answStr Answer string from ReadAnswer

[out] value Value contained in the answer string

eDecoded_none answStr is not decoded

eDecoded_Bootup answStr is a boot-up message

eDecoded_NMT answStr is an NMT message

eDecoded_NMTRequest answStr is an NMT request answer

eDecoded_Heartbeat answStr is a heartbeat message

eDecoded_Statusword answStr is a status word message
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
36

API documentation
5.4.8 DecodeCmdStr

Decode the passed ReadAnswer command string. If it is an object command, node number,
index, subindex and SOBJ value are returned.

Parameter

Return data

eDecoded mmProtDecodeCmdStr (const char* cmdStr,

int& nodeNr,

int& index,

int& subIndex,

const char** valueStr

)

[in] cmdStr Command string

[out] nodeNr Node number

[out] index Object index

[out] subIndex Object subindex

[out] valueStr Value to be written for SOBJ command

eDecoded_none cmdStr is not decoded

eDecoded_SOBJ cmdStr is a SOBJ command

eDecoded_GOBJ cmdStr is a GOBJ command
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
37

API documentation
5.4.9 CheckMotionCommand

int mmProtCheckMotionCommand (char* cmd)
Check whether the passed ASCII command is linked to a specific action.

Parameter

Return data

[in]cmd ASCII command

eCheckCommand_noAction No special action

eCheckCommand_State Command can change the NMT, device or Opmode state

eCheckCommand_SwitchOn Command switches the motor on

eCheckCommand_Save Command is a SAVE command

eCheckCommand_Restore Command is a RESTORE command

eCheckCommand_Reset Command is a RESET command
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
38

API documentation
5.4.10 CheckCommand

Check whether a specific action is linked to the passed object command.

Parameter

Return data

eCheckCommand mmProtCheckCommand (int index,

int subIndex,

int dataLen,

int data

)

[in]index Index of the data object

[in]subIndex Subindex of the data object

[in]dataLen Data length in bytes

[in]data Data value to be sent

eCheckCommand_noAction No special action

eCheckCommand_State Command can change the NMT, device or Opmode state

eCheckCommand_SwitchOn Command switches the motor on

eCheckCommand_Save Command is a SAVE command

eCheckCommand_Restore Command is a RESTORE command

eCheckCommand_Reset Command is a RESET command
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
39

API documentation
5.4.11 GetCommunicationHistory

Read out the communication history that is cached in the protocol layer.

Can be read out in a loop as long as true is returned.

Parameter

Return data

bool mmProtGetCommunicationHistory (const char** timestamp,

eHistoryState& state,

const char** data,

const char** telegram,

eHistoryError& error

)

[out] timestamp Send or receive time stamps

[out] state Status of the telegram:

eHistoryState_SendData Sent data

eHistoryState_ReceiveWaitData Received expected data

eHistoryState_ReceiveData Asynchronously received data

eHistoryState_Message Informative message

[out] data Command / interpreted received data

[out] telegram Send / receive telegram

[out] error Error code:

eHistoryError_Ok No error

eHistoryError_SendError Error sending

eHistoryError_ReceiveError Receive error

eHistoryError_ReceiveTimeout Timeout

eHistoryError_ReceiveEmcy Emergency error received

true Read out buffer content

false Buffer empty
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
40

API documentation
5.4.12 GetSendTelegram

Read last transferred send telegram.

Parameter

5.4.13 SetupMessageFilter

Activate a CAN message filter.

The CAN message filter is used to filter asynchronous CAN messages. If the filter is active,
COB-ID exceptions can be specified that are still to be allowed through.

Parameter

void mmProtGetSendTelegram (const char** sendTelegram,

const char** cmdString

)

[out] sendTelegram Send telegram

[out] cmdString Send command

void mmProtSetupMessageFilter (int nodeNr,

int activated,

int cobId,

int cobIdCount

)

[in]nodeNr Node numbers whose telegrams should always be displayed

[in]activated 0: Message filter deactivated

1: Filter out external messages apart from exceptions

2: Filter out internal TxPDOs apart from exceptions

3: Filter out external messages and internal TxPDOs

[in]cobId Array with COB-ID exceptions

[in]cobIdCount Number of COB-ID exceptions
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
41

API documentation
5.5 Data recording
With the functions for data recording, internal device parameters can be recorded con-
stantly (logger) or buffered (recorder) and read out.

5.5.1 SetupTrace

Configure trace.

Parameter

Return data

Structures
The STraceSetup and STraceTrigger structures are defined for the trace configuration:

To use the trace function, a callback function must be specified during initialization by
means of which the recorded data can be passed to the application asynchronously.

eMomanprot mmProtSetupTrace (STraceSetup& TraceSetup,

STraceTrigger& TraceTrigger

)

[in]TraceSetup Setting the trace channels

[in]TraceTrigger Trigger settings

eMomanprot_ok Successfully configured

eMomanprot_error Configuration error

typedef struct {
bool run; /*!< run or stop tracing */
int nodeNr; /*!< node number to be traced */
int chan; /*!< 0: default channel, 1: logger uses CAN-PDOs */
int mode; /*!< 0: logger(single requests), 1: recorder(buffered) */
int source[4]; /*!< trace parameter: OD Index/Subindex */
int sourceLen[4]; /*!< data length in byte; 0: source not used */
int sourceType[4];/*!< 0: default; CAN logger: cobId of trace pdo;

–1: deactivated */
int buffer; /*!< buffer size (number of samples to be recorded) */
int sampletime /*!< sampletime in recorder mode */

} STraceSetup;
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
42

API documentation
Example: Logger MC V2.x RS

Example: Logger MC V3.x RS/USB

typedef struct {
int mode; /*!< 0: no trigger, 1: singleshot, 2: retriggered */
int source; /*!< trigger parameter: OD Index/Subindex */
int sourceType; /*!< TrigType: 0 = OD */
int threshold; /*!< trigger if source value > or < threshold value */
int edge /*!< 0: rising (>), 1: falling (<) */
int delay /*!< triggerdelay */

} STraceTrigger;
The listed trace and trigger settings are not available for all devices (see Functional
Manual for the respective device).

STraceTrigger traceTrigger; //not used
STraceSetup traceSetup;

traceSetup.run = true;
traceSetup.source[0] = 200; //Trace parameter 1: actual position
traceSetup.source[1] = 255; //Trace parameter 2: not used
traceSetup.sampletime = 0;
eMomanprot ret = mmProtSetupTrace(traceSetup, traceTrigger);

STraceTrigger traceTrigger; //not used
STraceSetup traceSetup;

traceSetup.run = true;
traceSetup.nodeNr = 1;
traceSetup.chan = 0; //Default channel
traceSetup.mode = 0; //Logger
traceSetup.source[0] = 0x606400; //Trace parameter 1: actual position
traceSetup.source[1] = 0x606C00; //Trace parameter 2: actual speed
traceSetup.source[2] = 0x607800; //Trace parameter 3: actual current

consumption
traceSetup.source[3] = 0; //Trace parameter 4: not used
traceSetup.sourceLen[0] = 4;
traceSetup.sourceLen[1] = 4;
traceSetup.sourceLen[2] = 2;
traceSetup.sourceLen[3] = 0;
traceSetup.sourceType[0] = 0;
traceSetup.sourceType[1] = 0;
traceSetup.sourceType[2] = 0;
traceSetup.sourceType[3] = -1;
eMomanprot ret = mmProtSetupTrace(traceSetup, traceTrigger);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
43

API documentation
Example: Logger MC V3.x CAN

STraceTrigger traceTrigger; //not used
STraceSetup traceSetup;

traceSetup.run = true;
traceSetup.nodeNr = 1;
traceSetup.chan = 1; //Logger uses CAN-PDOs
traceSetup.mode = 0; //Logger
traceSetup.source[0] = 0x606400; //Trace parameter 1: actual position
traceSetup.source[1] = 0x606C00; //Trace parameter 2: actual speed
traceSetup.source[2] = 0; //Trace parameter 3: not used
traceSetup.source[3] = 0; //Trace parameter 4: not used
traceSetup.sourceLen[0] = 4;
traceSetup.sourceLen[1] = 4;
traceSetup.sourceLen[2] = 0;
traceSetup.sourceLen[3] = 0;
traceSetup.sourceType[0] = 0x481; //CobId of trace pdo for Source0
traceSetup.sourceType[1] = 0x481; //CobId of trace pdo for Source1
traceSetup.sourceType[2] = -1; //Deactivated
traceSetup.sourceType[3] = -1; //Deactivated

eMomanprot ret = mmProtSetupTrace(traceSetup, traceTrigger);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
44

API documentation
Examples: Recorder MC V3.x

STraceTrigger traceTrigger;

traceTrigger.mode = 0; //No trigger
STraceSetup traceSetup;

traceSetup.run = true;
traceSetup.nodeNr = 1;
traceSetup.chan = 0; //Default channel
traceSetup.mode = 1; //Recorder
traceSetup.source[0] = 0x606400; //Trace parameter 1: actual position
traceSetup.source[1] = 0x606C00; //Trace parameter 2: actual speed
traceSetup.source[2] = 0; //Trace parameter 3: not used
traceSetup.source[3] = 0; //Trace parameter 4: not used
traceSetup.sourceLen[0] = 4;
traceSetup.sourceLen[1] = 4;
traceSetup.sourceLen[2] = 0;
traceSetup.sourceLen[3] = 0;
traceSetup.sourceType[0] = 0;
traceSetup.sourceType[1] = 0;
traceSetup.sourceType[2] = -1;
traceSetup.sourceType[3] = -1;
traceSetup.buffer = 512;
traceSetup.sampletime = 1;

eMomanprot ret = mmProtSetupTrace(traceSetup, traceTrigger);
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
45

API documentation
5.5.2 RequestTrace

eTraceRequest mmProtRequestTrace (int mode)
Send trace request.

Parameter

Return data

Logger
Executing RequestTrace(0) sends a single data request to the device. In response, this
device immediately transfers the configured data at the current point in time. The data are
then passed on to the specified TraceValuesReceived callback function.

The following values are returned with the TraceValuesReceived callback function:

 Node number of the addressed device

 Array with 4 values (unsigned int) of the configured sources at the reading time

 Time code as time difference to the last reading time in milliseconds

After processing the received data, RequestTrace(0) can be called again.

[in]mode Request mode

0: Standard (read recorded data immediately)

1: Only status check in recorder mode

2: Read recorded data in recorder mode

eTraceRequest_inactive Trace not activated

eTraceRequest_sent Trace request sent

eTraceRequest_stateWaitResponse Recorder expecting answer to trace request

eTraceRequest_stateWaitForTrigger Recorder waiting for fulfilled trigger condition

eTraceRequest_stateRecordingInProgress Recorder recording in progress

eTraceRequest_stateRecordingFinished Recorder recording finished

eTraceRequest_errorReadBuffer Error when reading the recorder buffer
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
46

API documentation
Recorder (MC V3.x only)
Executing RequestTrace(0) or RequestTrace(1) sends a recorder request to the device.
As soon as the set trigger condition is met, the device records the configured data.

 With mode = 0, the recorded data are read as soon as they become available. eTraceRe-
quest_stateRecordingFinished is returned at the same time.

 With mode = 1, only eTraceRequest_stateRecordingFinished is returned. Execute
RequestTrace(2) to read the data.

RequestTrace(0) or RequestTrace(1) must be called in regular intervals to obtain infor-
mation about the current trace request status and to request the recorded data as soon as
they become available.

After being read in, the data are passed on in succession to the specified TraceValuesRe-
ceived callback function.

The following values are returned with the TraceValuesReceived callback function:

 Node number of the addressed device

 Array with 4 values (unsigned int) of the configured sources at the reading time

 Timecode with value of the set sample time

The number of calls of the callback function corresponds to the set size of the trace buffer.

After transferring the trace buffer, recording in the device is immediately reactivated (trig-
ger enable). The availability of new data can be checked by making further calls of
RequestTrace(0) or RequestTrace(1).
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
47

API documentation
5.6 Connection settings
The functions for the connection setting can be used to read and change the communica-
tion settings of connected devices. In the case of an unknown communication setting, a
connection to connected devices can be searched for.

5.6.1 NetworkService

Identify and address network nodes, even if their node number is not known or not yet set.

With CANopen, the LSS protocol according to CiA 305 is used for this purpose.

Parameter

Return data

For the vendorId, productCode and revisionNumber values, see the Functional or Com-
munications Manual of the respective device. The serialNumber is generally printed on the
product.

eMomanprot mmProtNetworkService (int mode,

int vendorId,

int productCode,

int revisionNumber,

int serialNumber

)

[in] mode Mode of the network service:

0: LSS switch normal mode

1: LSS switch config mode global

2: LSS switch config mode selective

3: LSS identify remote slave

4: select nodeNr (in param serialNumber)

[in] vendorId CAN-ID of the manufacturer (0x1018.01)

[in] productCode Identification number of the product (0x1018.02)

[out] revisionNumber Version number of the product (0x1018.03)

[out] serialNumber Serial number (0x1018.04) / node number

>0 Number of found nodes

eMomanprot_ok Function successfully executed

eMomanprot_error Error when executing the function
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
48

API documentation
5.6.2 GetCommunicationSettings

Read communication settings of the node addressed via NetworkService.

Parameter

Return data

5.6.3 ChangeNodeNr

bool mmProtChangeNodeNr (int nodeNr)
Change the node number of node addressed via NetworkService.

Parameter

Return data

bool mmProtGetCommunicationSettings (int& nodeNr,

int& baudrate

)

[out] nodeNr Currently set node number

[out] baudrate Currently set baud rate

true Communications settings successfully read out

false Error when reading out the communication settings

[in] nodeNr New node number

true Node number successfully changed

false Not possible to change the node number
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
49

API documentation
5.6.4 ChangeBaudrate

Change the baud rate of the node addressed via NetworkService.

Parameter

Return data

5.6.5 Connect

Check or establish connection to a node.

If no connection has yet been established, a broadcast method is used to determine the
node number of a connected device.

Parameter

Return data

bool mmProtChangeBaudrate (int baudrate,

int activate

)

[in] baudrate New baud rate that is to be set in bit/s

0: Autobaud

[in] activate 0: Activate baud rate later (call with activate = 2)

1: Activate baud rate immediately

2: Activate previously set baud rate (parameter baudrate not used here)

true Baud rate successfully changed

false Not possible to change the baud rate

int mmProtConnect (int& baudrate,

bool tryBaudrates

)

[in, out] baudrate In: Current baud rate

Out: Determined baud rate in bit/s if tryBaudrates = true

[in] tryBaudrates True: Try baud rates if no connection is possible

≥0 First connected node number (255: unconfigured)

–1 No connection found
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
50

API documentation
5.6.6 FindConnection

Find connection to an RS232 node.

If no RS232 connection could be established with Connect via broadcast, it may be a RS232
network with which various node numbers can be tried with different baud rates.

Parameter

Return data

5.6.7 UnconfiguredSlavesCount

int mmProtUnconfiguredSlavesCount (void)
Read number of unconfigured nodes in the network.

With CANopen, the LSS protocol according to CiA 305 is used for this purpose. With USB
and RS232, 0 is always returned.

Return data
Number of unconfigured nodes.

int mmProtFindConnection (int scanMin,

int scanMax,

int& baudrate

)

[in] scanMin Smallest node number

[in] scanMax Higher node number

[out] baudrate Determined baud rate in bit/s

≥0 First connected node number (255: unconfigured)

–1 No connection found
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
51

API documentation
5.6.8 SupportedBaudratesList

const unsigned int* mmProtSupportedBaudratesList (int& count)
Read list of baud rates supported by this protocol.

Parameter

Return data
Pointer to the constant baud rate list.

Example

[out] count Number of supported baud rates

int count = 0;
const unsigned int* baudList = NULL;
baudList = mmProtSupportedBaudratesList (count);

if (baudList != Null) {

unsigned int baudrate;

for (int i = 0; i < count; i++) baudrate = baudList[i];

}

2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
52

Ports and channels
6 Ports and channels
All interface DLLs provide two general functions for accessing the interface information:

 mmIntfEnumPorts()
Returns a list of available ports and channels, including the port information of the
loaded interface.

 mmIntfIsPortAvailable()
Checks whether the specified port/channel is available or already in use.

Both functions are defined in the Momanintf.h file.

6.1 EnumPorts

Read out available ports and channels of the loaded interface.

A sequential port ID is assigned for each interface (USB device, CAN card) registered via an
interface DLL. When using multiple USB devices or CAN cards of this interface type, this port
ID can be used to again access the device connected there. For COM, the port ID is always 0.
For COM, the channel number designates the communication channel (e.g. 5 for COM5);
for CAN cards with multiple bus connections, this is the number of the respective channel.
For CAN cards with just one bus connection and with USB, the channel number is 0.

Port ID and channel number are required as parameters of protocol function OpenCom.

Parameter

Return data
Number of found channels.

int mmIntfEnumPorts (const char** portList,

const char** chanList,

const char** deviceInfoList

)

[out] portList List of the found port IDs (separated by commas).

If a port has multiple channels, the port ID for each channel is
specified.

Example: "1,2,2" (port 1 with one channel, port 2 with two chan-
nels)

[out] chanList List of the channel numbers for each port (separated by commas).

0: Only one channel on this port (no channel number)

>0: Channel number of this port.

Example: "0,1,2" (port 1 with one channel, port 2 with chan-
nel 1 and 2)

[out] deviceInfoList List of the device information (interface name, serial number) for
each port (separated by commas).
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
53

Ports and channels
6.2 IsPortAvailable

Checks whether the specified port/channel is available or already in use.

Parameter

Return data

eMomanIntf mmIntfIsPortAvailable (int port,

int chan

)

[in]port Port ID

[in]chan Channel number

eMomanintf_not_avail Port or channel not present

eMomanintf_avail Port present and available

eMomanintf_avail_inuse Port present but already in use
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
54

Alternative programming possibilities
7 Alternative programming possibilities
In addition to the possibility to program the FAULHABER Motion Controllers via the
MomanLib API described here, standard methods of the respective programming language
can be used for communication. When using standard methods, there are no restrictions
with respect to functionality and performance. In addition, the dependence on other
external components no longer applies.

7.1 RS232
Support for the RS232 interface is provided standard in most programming languages. The
communication protocol to be used is described in the Communications Manual of the
respective controller.

 Motion Controllers of the family MC V2.x are addressed via simple ASCII commands
with subsequent carriage return. The commands can be sent directly character for char-
acter to the RS232 interface. Answers are read in the same way.

 Motion Controllers of the family MC V3.x are addressed via binary telegrams. Note that,
besides the data that are to be transferred, the telegram length and a checksum that is
to be calculated are included in the telegram. The algorithm for calculating the check-
sum is described in the communications manual of the respective controller.

7.1.1 C/C++

In C/C++, functions from the Windows API (CreateFile(), WriteFile(), ReadFile()) can
be used. Alternatively, a number of commercial and free libraries are available for serial
communication.

7.1.2 Delphi

In Delphi, functions from the Windows API (CreateFile(), WriteFile(), ReadFile()) can
be used. Alternatively, a number of commercial and free libraries are available for serial
communication.

7.1.3 C#

In C#, a System.IO.Ports.SerialPort can be created that can then be used either via the
System.IO.Stream interface or the Read and Write class functions. By using the DataRe-
ceived event, constant polling does not need to be used; this event is recommended in
cases of strict performance requirements.

7.1.4 LabVIEW

On the VISA palette, LabVIEW makes "serial" VIs available for communication via the serial
interface.

In the terminal window, the Motion Manager displays the communication history with
the content of each sent and received telegram. For each command, this can be used to
read the sent telegram and transfer it to a separate program.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
55

Alternative programming possibilities
7.2 USB
When using a USB-to-serial adapter, all controllers with RS232 interface can be pro-
grammed as described in chap. 7.1, p. 55.

7.2.1 Virtual COM port under Windows 10

Under Windows 10, a FAULHABER Motion Controller of the family MC V3.x can also be
addressed via a virtual COM port as an alternative to the direct USB connection. To do this,
the driver connection must be changed via the Windows Device Manager:

1. Update driver software.

2. Search for driver software on the computer.

3. Select from a list of device drivers on the computer.

4. Change from "Faulhaber MC3 WinUSB" to "Serial USB device".

Displayed in the Device Manager is which COM port number was assigned. It can be
changed if necessary.

After changing the driver, the Motion Controller can be operated via USB as an RS232
device with the services described in the Communications Manual.

7.2.2 Using the Moman USB-DLL

The MC3Usb.dll Motion Manager interface DLL can also be integrated in an application.
The interface functions are defined in header file Momanusb.h:

void mmUsbInitLib(tdmmUsbDataCallback DataReceived);

void mmUsbDeinitLib(void);

int mmUsbOpen(int port, int channel);

void mmUsbClose(void);

void mmUsbSendData(char* data, int len);

int mmUsbReadData(char* data);

int mmUsbGetBufCount(int direction);

The callback function passed to mmUsbInitLib() is called on incoming messages. The
received data must then be read via mmUsbReadData() and interpreted according to the
documentation in the Communications Manual.

USB telegrams are sent with the mmUsbSendData() function.

7.3 CAN
The manufacturers of CAN interface cards (e.g., HMS-IXXAT, Peak) offer their own API
libraries for use with various programming languages for their drivers.

After changing the driver, the Motion Controller can – also with the Motion Manager –
only be addressed via the virtual COM port instead of via USB.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
56

Function overview
8 Function overview
MomanLib makes the following API functions available:

mmIntfEnumPorts
mmIntfIsPortAvailable
mmProtChangeBaudrate
mmProtChangeNodeNr
mmProtCheckCommand
mmProtCheckMotionCommand
mmProtCloseCom
mmProtCloseInterface
mmProtConnect
mmProtDecodeAnswStr
mmProtDecodeCmdStr
mmProtFindConnection
mmProtGetAbortMessage
mmProtGetCommunicationHistory
mmProtGetCommunicationSettings
mmProtGetInt64Obj
mmProtGetObj
mmProtGetSendTelegram
mmProtGetStrObj
mmProtInitInterface
mmProtLoadCommandSet
mmProtNetworkService
mmProtOpenCom
mmProtReadAnswer
mmProtRequestTrace
mmProtScanNode
mmProtSendBuffer
mmProtSendCommand
mmProtSendMotionCommand
mmProtSendTelegram
mmProtSetDataCallback
mmProtSetObj
mmProtSetObjTimeout
mmProtSetStrObj
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
57

Function overview
mmProtSetTraceValuesCallback
mmProtSetupMessageFilter
mmProtSetupTrace
mmProtSupportedBaudratesList
mmProtUnconfiguredSlavesCount
mmProtWaitAnswer
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
58

FAULHABER licence agreement
9 FAULHABER licence agreement

End User Licence Agreement for Software of
Dr. Fritz Faulhaber GmbH & Co. KG

between

(1) Dr. Fritz Faulhaber GmbH & Co. KG, Faulhaberstraße 1, 71101 Schönaich
- hereinafter "FAULHABER" -

and

(2) You as the user
- hereinafter "Licensee" -

The parties (1) and (2) hereinafter referred to individually as "Party" and together as "Par-
ties".

PRELIMINARY REMARKS

(A) Faulhaber designs drive systems and produces them. In addition, FAULHABER has
developed various software products. For example, the "FAULHABER Motion
Manager" (hereinafter "Motion Manager") supports the commissioning and configu-
ration of FAULHABER drive systems. Details - if available - can be found in the respec-
tive software manual. Unless otherwise expressly agreed, the software product is made
available to the Licensee free of charge as a supplement to other hardware and soft-
ware products offered by FAULHABER.

(B) The Licensee intends to use one or more software product(s) in its business.
FAULHABER is willing to grant the Licensee rights of use to the software product(s) of
Dr. Fritz Faulhaber GmbH & Co. KG under the terms of this End User License Agreement
(hereinafter "Contract"). The details of this result from § 2.

This having been explained, the Parties agree the following:
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
59

FAULHABER licence agreement
§ 1
Subject of the Contract

(1) The subject of this Contract is the transfer of one or more of the software products
listed in subsection (2) (hereinafter "License Subject") and the granting of the rights of
use described in § 2 by FAULHABER to the Licensee.

(2) The provisions of this Agreement apply to the following categories of License Subjects,
including related manuals, if available:

a) Motion Manager with associated user documentation;

b) b) Programming Libraries;

c) Firmware;

d) Sequential Programs.

(3) The following services in particular are not the subject of this Contract:

a) Installation or other setup of the License Subject at the Licensee;

b) any individual settings of variable parameters of the License Subject according to
the requirements of the Licensee (customizing);

c) individual program extensions for the Licensee (individual modifications);

d) Adaptations of interfaces to the needs of the Licensee;

e) Instruction and training of the Licensee's program users;

f) Maintenance of the License Subject, in particular delivery of new, future versions.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
60

FAULHABER licence agreement
§ 2
Content and Scope of the Rights of Use

(1) FAULHABER or its licensors are exclusively entitled to all rights to the License Subject.
The Licensee is only entitled to the rights to the License Subject as agreed in this Con-
tract.

(2) The Parties agree that the License Subject and the associated documents, including
future versions, are protected by copyright and constitute confidential information
and trade secrets of FAULHABER in accordance with § 6.

(3) Unless otherwise provided in subsection (4), FAULHABER grants the Licensee the fol-
lowing rights of use to the License Subject:

a) FAULHABER grants the Licensee the non-exclusive right, unlimited in time and ter-
ritory, to use the License Subject for its own purposes and for the purposes of
Licensee's customer in accordance with the following subsections.

b) This right includes the installation of the License Subject as well as the loading, dis-
playing and running of the installed License Subject as well as the saving of the
License Subject in the memory of the hardware on which the License Subject is
installed. In particular, the Licensee is not entitled to edit or otherwise modify the
License Subject, unless this is expressly permitted in this Contract.

c) Duplications of the License Subject shall only be permitted to the extent necessary
for the contractual use. The Licensee may make backup copies of the License Sub-
ject in accordance with the rules of technology to the extent necessary and in
unchanged form, and in particular also as part of its normal backup of the system
environment.

d) The Licensee shall be entitled to transfer the License Subject if (i) the Licensee
transfers the License Subject together with original hardware components from
FAULHABER, (ii) the transfer of the License Subject is free of charge for the third
party, (iii) the Licensee ensures that the third party is not granted any further
rights to the License Subject than the Licensee is entitled to under this Contract
and (iv) the third party is imposed at least the obligations of this Contract with
regard to the License Subject. Third parties shall also include companies which are
affiliated with the Licensee within the meaning of § 15 of the German Stock Cor-
poration Act (AktG).

e) FAULHABER is entitled to update the License Subject without prior notice, e.g. in
order to correct errors or to improve or extend functions. If the updated version
replaces the previous License Subject, it shall also be subject to the provisions of
this Contract.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
61

FAULHABER licence agreement
f) The Licensee may only use the License Subject within the scope of the intended
use and only for productive operation if the License Subject is qualified for the
specific application. "Productive operation" means the control of the respective
drive system manufactured by FAULHABER by the License Subject in the ongoing
operation of the application in the specific area of use of the Licensee, alone or in
combination with other components of an overall system. Qualification for the
specific application presupposes in particular that appropriate tests in the produc-
tive environment have been carried out successfully and that existing legal
requirements and requirements for the specific application are met in full by the
Licensee during use (e.g. international standards and norms). This applies in par-
ticular to use for medical and military purposes and in safety-critical areas (e.g. in
the aerospace sector and for controlling nuclear facilities).

g) The Licensee shall have no claim against FAULHABER for release of the source
code or the source code documentation. Notwithstanding the foregoing, the
source code of the License Subject shall be part of the grant of use, provided that
this is expressly stipulated in this Contract (in particular in subsection (4) below).

h) Insofar as the License Subject provided to the Licensee by FAULHABER contains
open source software or software for which FAULHABER only has a derived right
of use (hereinafter "Third Party Software"), the usage regulations to which this
Third Party Software is subject shall apply additionally and with priority. The Third
Party Software used within a License Subject, the license condition(s) applicable to
the Third Party Software as well as any existing copyright notices are each named
in the associated manual or are made available to the Licensee for downloading in
a separate file with the delivery of the License Subject. The Licensee is obliged to
comply with the respective license conditions. In the event of a breach of these
license conditions by the Licensee, the licensors as well as FAULHABER shall be
entitled to assert the resulting claims and rights in their own name.

(4) The rights of use pursuant to subsection (3) shall be supplemented or modified as fol-
lows for the License Subjects listed below:

a) Motion Manager

aa) The intended use of the Motion Manager results - if available - from the
respective current version of the associated manual, which is made available
on the FAULHABER website.

bb) The Motion Manager may only be used if the Licensee ensures that no injury
or damage to health and no risk of material damage to property (e.g. equip-
ment) is possible when it is used.

cc) The Licensee may not use the Motion Manager in productive operation. By
way of clarification, the Parties state that such use does not constitute an
intended use of the Motion Manager. The same applies to the use for con-
trolling drive systems which were not manufactured by FAULHABER, as well
as the use for controlling drive systems which were manufactured by
FAULHABER but which are not listed in the program description. Deviating
from this, Sequential Programs contained in the Motion Manager may be
adapted for and used in productive operation, provided that they have been
qualified in the application in accordance with subsection (3) f).
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
62

FAULHABER licence agreement
dd) Decompiling and other types of reverse engineering are generally not per-
mitted. This does not apply to the Licensee's right to observe, examine or
test the functioning of the Motion Manager in order to determine the ideas
and principles underlying a program element if this is done by actions to
load, display, run, transmit or store the program, which the Licensee is enti-
tled to do in accordance with this Contract (§ 69d (3) of the German Copy-
right Act (UrhG)). In addition, notwithstanding sentence 1, the Licensee shall
be entitled to decompile for the purpose of producing an interoperable pro-
gram exclusively under the conditions of § 69e (1) and within the limits of
§ 69e (2) UrhG. The foregoing rights shall only exist if the Licensee has
requested the information it requires from FAULHABER prior to any such
action and has not received the required information within a reasonable
period of time. As part of its request, the Licensee shall provide FAULHABER
with all information necessary to evaluate the request.

ee) Any further use of the Motion Manager, in particular the granting of subli-
censes, requires the prior express written consent of FAULHABER. This shall
not apply in the event of a sale of the drive systems, insofar as their proper
use requires the use of the Motion Manager.

ff) The Motion Manager may only be used in connection with original hardware
components from FAULHABER. Use for third-party hardware is prohibited.

b) Programming Libraries

aa) The Licensee is granted the right to edit source code files of the Program-
ming Libraries and to transfer these edits to third parties. However, the edit-
ing of object code files of the Programming Libraries is prohibited.

bb) The use of the Programming Libraries is only permitted in connection with
original hardware components from FAULHABER. Use for third-party hard-
ware is prohibited.

cc) FAULHABER shall make manuals for the Programming Libraries available to
the Licensee for downloading on FAULHABER's website as required and at its
own discretion. The Licensee shall have no claim to the provision of a man-
ual. Insofar as an intended use of the Programming Libraries is specified, this
shall result from the respective current version of the associated manual - if
available.

dd) The Programming Libraries may only be used if the Licensee ensures that no
injury or damage to health and no risk of material damage to property
(e.g. equipment) is possible when they are used.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
63

FAULHABER licence agreement
c) Firmware

aa) The intended use of the Firmware results from the respective current version
of the associated manual, which is made available on FAULHABER's website.

bb) The Firmware may only be used if the Licensee ensures that no injury or dam-
age to health and no risk of material damage to property (e.g. equipment) is
possible when it is used.

cc) The use of the Firmware is only permitted in connection with original hard-
ware components from FAULHABER. The right to use the Firmware for hard-
ware of a third party shall only exist after prior written consent by
FAULHABER.

dd) Decompiling and other types of reverse engineering are generally not per-
mitted. This does not apply to the Licensee's right to observe, examine or
test the functioning of the Firmware in order to determine the ideas and
principles underlying a program element if this is done by actions to load,
display, run, transmit or store the program, which the Licensee is entitled to
do in accordance with this Contract (§ 69d (3) of the German Copyright Act
(UrhG)). In addition, notwithstanding sentence 1, the Licensee shall be enti-
tled to decompile for the purpose of producing an interoperable program
exclusively under the conditions of § 69e (1) and within the limits of § 69e (2)
UrhG. The foregoing rights shall only exist if the Licensee has requested the
information it requires from FAULHABER prior to any such action and has
not received the required information within a reasonable period of time. As
part of its request, the Licensee shall provide FAULHABER with all informa-
tion necessary to evaluate the request.

d) Sequential Programs

aa) Sequential Programs are programs that can be executed on specific
FAULHABER controller hardware.

bb) The Licensee is granted the right to edit Sequential Programs and to transfer
these edits to third parties, provided that they have been delivered in source
code form.

cc) The use of Sequential Programs is only permitted in connection with original
hardware components from FAULHABER. The right to use Sequential Pro-
grams for hardware of a third party shall only exist after prior written con-
sent by FAULHABER.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
64

FAULHABER licence agreement
§ 3
Delivery

(1) The License Subject shall be delivered in the form existing at the time of delivery ("as
is").

(2) The delivery of the License Subject shall be made in digital form by providing it for
download on FAULHABER's website or individually by e-mail. FAULHABER is not
obliged to provide the License Subject on physical data carriers.

(3) Prior to provision, FAULHABER shall check the License Subject for any malware using a
virus scanner that is up-to-date at the time of the respective provision. FAULHABER
shall have no further obligations with regard to freedom from malware.

§ 4
Obligations of the Licensee

(1) The Licensee is obliged to ensure a sufficient technical operating and system environ-
ment and the proper operation of the License Subject. The establishment of the oper-
ating and system environment for the License Subject shall be the sole responsibility of
the Licensee.

(2) If productive operation of the License Subject is permitted under this Agreement, the
Licensee shall ensure that the requirements under A.I. § 2 (3) f) are fully met prior to
productive operation of the License Subject. § 377 of the German Commercial Code
(HGB) remains unaffected.

(3) The Licensee shall be solely responsible for the installation and implementation of the
License Subject on Licensee's systems.

(4) The Licensee shall take all necessary and reasonable measures to prevent or limit dam-
age caused by the License Subject. In particular, the Licensee shall use the current pro-
tective mechanisms to defend against malware.

(5) The Licensee is aware that, under certain circumstances, separate drivers from the
adapter manufacturers may be required for any required communication interfaces (in
particular for the Motion Manager and Programming Libraries), which are not pro-
vided by FAULHABER. Communication interfaces are interfaces for data exchange
between PC and controller, e.g. via CAN, RS232, USB or EtherCAT. The Licensee is
obliged to independently procure, license and install any drivers required to use these
communication interfaces.

(6) The Licensee is prohibited from removing or modifying any copyright information
from the License Subject.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
65

FAULHABER licence agreement
§ 5
Liability of FAULHABER

(1) Insofar as the License Subject is provided free of charge, the following liability regula-
tions shall apply:

a) FAULHABER shall only be liable for material and legal defects if FAULHABER
fraudulently conceals such a defect.

b) FAULHABER shall be liable in accordance with the statutory provisions in the event
of intent, gross negligence and claims under the Product Liability Act, fraudulent
concealment of a defect, guarantee claims and in the event of injury to life, limb
or health. Otherwise, FAULHABER's liability for claims for damages and reimburse-
ment of expenses - irrespective of the reason - shall be excluded.

c) Insofar as a loss or destruction of data at the Licensee was caused by grossly negli-
gent or intentional breach of contractual or statutory obligations, FAULHABER
shall only be liable up to the amount of the typical recovery expense that arises
despite regular, state-of-the-art data backup.

(2) In the event that Firmware is provided for installation on hardware components of
FAULHABER, the liability regulations applicable to the respective hardware component
shall apply in deviation from subsection (1).

§ 6
Confidentiality

(1) The Parties undertake to treat as confidential for an unlimited period of time all infor-
mation of the other Party obtained in the course of the initiation and execution of the
Contract which is marked as confidential or is confidential by its nature ("Confidential
Information") for an unlimited period of time and to use it only for the purpose of exe-
cuting this Contract. FAULHABER's Confidential Information shall also include the
License Subject. Notwithstanding the foregoing, unless otherwise agreed, License Sub-
jects made publicly available for download by FAULHABER on FAULHABER's website
shall not be deemed Confidential Information.

(2) The Licensee shall only make the License Subject accessible to employees and other
third parties insofar as this is necessary to exercise the granted rights of use. The Licen-
see shall inform all persons to whom it grants access to the License Subject of
FAULHABER's existing rights thereto and of the confidentiality obligations and shall
oblige these persons in writing to maintain confidentiality to the same extent as in this
§ 6, insofar as the persons concerned are not obliged to maintain secrecy at least to the
aforementioned extent for other legal reasons.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
66

FAULHABER licence agreement
(3) The obligations of confidentiality under the preceding subsections shall not apply to
Confidential Information that (i) was already in the public domain or known to the
other Party at the time it was transmitted by the Party; (ii) became apparent after
being transmitted by the Party through no fault of the other Party; (iii) have been
made available to the other Party by a third party after their transmission by the Party
in a non-illegal manner and without restriction as to confidentiality or exploitation;
and/or (iv) have been developed by one Party independently without using the Confi-
dential Information or trade secrets of the other Party. Furthermore, the obligations
shall not apply if the Confidential Information has to be published according to law, in
particular due to an administrative order or a court decision; in this respect, the pub-
lishing Party shall inform the other Party thereof without undue delay and support it in
defending such orders or decisions.

§ 7
Final Provisions

(1) Changes or additions to this Contract shall be made in writing. If they do not satisfy
this requirement, they are invalid. The same also applies to changes to this written
form clause.

(2) This Contract is subject to and shall be interpreted according to the laws of the Federal
Republic of Germany. The application of the UN sales law (CISG United Nations Con-
vention on Contracts for International Sale of Goods of April 11, 1980) is excluded.

(3) The sole place of jurisdiction is Stuttgart, if the Licensee is a businessperson in the
meaning of the Commercial Code, a legal person under public law or a special fund
under public law or on bringing the action the Licensee does not have any registered
offices or usual place of residence (permanent address) in the Federal Republic of Ger-
many.

(4) Should a provision of this Contract be or become invalid, all other provisions shall
remain unaffected. Statutory law shall take the place of provisions that are not
included or are invalid (§ 306 (2) of the German Civil Code (BGB)). Otherwise, the Par-
ties shall replace the void or invalid provision with a valid provision that comes as close
as possible to it in economic terms, unless a supplementary interpretation of the con-
tract takes precedence or is possible.
2nd edition, 8.10.2022 7000.05064, 2nd edition, 8.10.20227000.05064
67

7000.05064, 2nd edition, 8.10.2022
© Dr. Fritz Faulhaber GmbH & Co. KG

DR. FRITZ FAULHABER
GMBH & CO. KG
Antriebssysteme

Faulhaberstraße 1
71101 Schönaich • Germany
Tel. +49(0)7031/638-0
Fax +49(0)7031/638-100
info@faulhaber.de
www.faulhaber.com

https://www.faulhaber.com

	1 About this document
	1.1 Validity of this document
	1.2 Associated documents
	1.3 Symbols and designations
	1.4 List of abbreviations
	1.5 Legal notices

	2 Description
	2.1 Architecture
	2.2 Files

	3 Integration in the application
	3.1 Typical call sequence
	3.1.1 Synchronous communication
	3.1.2 Asynchronous communication

	3.2 C/C++
	3.3 Delphi
	3.4 C#
	3.5 LabVIEW

	4 Examples
	5 API documentation
	5.1 General
	5.2 Initialisation
	5.2.1 InitInterface
	5.2.2 CloseInterface
	5.2.3 OpenCom
	5.2.4 CloseCom
	5.2.5 ScanNode
	5.2.6 LoadCommandSet
	5.2.7 SetDataCallback
	5.2.8 SetTraceValuesCallback

	5.3 Accessing the object dictionary
	5.3.1 GetObj
	5.3.2 GetInt64Obj
	5.3.3 GetStrObj
	5.3.4 SetObj
	5.3.5 SetStrObj
	5.3.6 SetObjTimeout
	5.3.7 GetAbortMessage

	5.4 Advanced communication
	5.4.1 SendMotionCommand
	5.4.2 SendCommand
	5.4.3 SendBuffer
	5.4.4 SendTelegram
	5.4.5 WaitAnswer
	5.4.6 ReadAnswer
	5.4.7 DecodeAnswStr
	5.4.8 DecodeCmdStr
	5.4.9 CheckMotionCommand
	5.4.10 CheckCommand
	5.4.11 GetCommunicationHistory
	5.4.12 GetSendTelegram
	5.4.13 SetupMessageFilter

	5.5 Data recording
	5.5.1 SetupTrace
	5.5.2 RequestTrace

	5.6 Connection settings
	5.6.1 NetworkService
	5.6.2 GetCommunicationSettings
	5.6.3 ChangeNodeNr
	5.6.4 ChangeBaudrate
	5.6.5 Connect
	5.6.6 FindConnection
	5.6.7 UnconfiguredSlavesCount
	5.6.8 SupportedBaudratesList

	6 Ports and channels
	6.1 EnumPorts
	6.2 IsPortAvailable

	7 Alternative programming possibilities
	7.1 RS232
	7.1.1 C/C++
	7.1.2 Delphi
	7.1.3 C#
	7.1.4 LabVIEW

	7.2 USB
	7.2.1 Virtual COM port under Windows 10
	7.2.2 Using the Moman USB-DLL

	7.3 CAN

	8 Function overview
	9 FAULHABER licence agreement

