
PRODUCT

APPLICATIONNOTE 191

01.04.2021 DFF-FO_0284 Seite 1 von 37

Control MC V3.0 MotionController via RS232

An Arduino Library

Summary

This ApplicationNote is intended to show how a connection from an embedded µController to any FAULHA-

BER MC V3.0 via RS232 can be established. An example library has been developed using an Arduino nano1.

It is meant to be an example how such a communication stack could be implemented on a µController.

Details will be different for non-Arduino environments, but these changes are mentioned.

Applies To

Any MotionController out of the MC V3.0 family having an RS232 interface

Description

General Setup

The used setup consists of one Arduino nano every and 1 … 4 MC 5004 P controlled by the code examples.

The TTL levels of the Arduinos Rx/Tx ports @ PC4 and PC5 are converted to RS232 levels using a RS232

transceiver based on one of the popular MAX232 – here an old IF232 from elmicro2.

If multiple MC V3.0 are connected to a single host RS232, the interfaces of the devices are connected in

parallel. Rx/Tx must be swapped between the mastr and the slaves.

1 https://www.arduino.cc/en/Guide/NANOEvery
2 https://elmicro.com/de/ifmodule.html

Figure 1 Connection between a RS232 host and 1 ... n slaves

Faulhaber Product Application Note 191 Page 2 of 37

When a RS232 network is to be used the FAULHABER MCs must be configured for

RS232 net-mode to avoid any asynchronous messages. As any MC has to release the

TX line again after each transmission, the Tx-line of the drives is tied to GND via a

resistor.

3 https://store.arduino.cc/arduino-nano-every

Figure 2 Pinout of an Arduino nano every3

Faulhaber Product Application Note 191 Page 3 of 37

Arduino Example Environment

The Arduino implementation here uses the built-in Serial library of the Arduino environment. Different from

a bare metal µController there is no configuration of whatever peripheral module of the µController based

on this approach.

Apart from that the software components and methods could be transferred in a very similar manner to any

µController.

The code structure of an Arduino .ino sketch is:

//--- defines ---

//--- includes ---

//--- globals ---

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
 // Debug Port
 Serial.begin(500000);
 …
}

void loop() {
 // put your main code here, to run repeatedly:
 …
}

Libraries like the one used here would be included by adding an appropriate #include statement at the top

of the file.

Any one-time configuration like opening the interfaces, dynamic configuration of the used software in-

stances and even connecting them would usually happen at the beginning in the setup() method of the

framework.

The loop() is then called over and over. There is no guaranteed time to this. If the loop takes longer to be

executed the complete execution simply is postponed. So there explicitly is no real-time behavior associated

with the loop. The only convention is: it’s restarted again after being executed.

There seem to be some services which are executed by the framework between consecutive calls of loop()

though.

An application using the Serial library could implement an event-handler serialEvent() which would be called

at the end of each loop to check for newly received characters.

Code 1 Basic structure of an Arduino program

Faulhaber Product Application Note 191 Page 4 of 37

In order to keep the Serial interface updated a short cycle for the loop() seems to be

the best idea. The library follows this lead and does not block the loop but implements

whatever behavior in a manner which allows for cyclic execution.

A cyclic approach is implemented with the MC V3.0 Arduino RS232 library – loop() can be kept short. But as

the serialEvent() would be executed in between the loops anyway - which is kind of implicit polling - the

library here actually explicitly uses polling the Serial interface for new characters in each loop based on a

check of available characters:

while(Serial1.available())
{
 //read the first char
 uint8_t inChar = (uint8_t)Serial1.read();
 …
}

Resource usage

Serial connected to the UART to USB bridge used for development

Serial15 the interface using PC4 and PC5 connected to the drives via level shifter

4 https://www.arduino.cc/en/Tutorial/BuiltInExamples/SerialEvent

5 On different boards different Serial ressources are available. It is preferred to use a non shared port to

communicate with the MotionController. MCUart.cpp would have to be modified to use whatever different

port shall be used then.

Figure 3 Example code of a serialEvent()4

Code 2 call to the Serial1 within the MCUart

Table 1 Serial resources used by the Arduino MC V3.0 RS232 library

Faulhaber Product Application Note 191 Page 5 of 37

Library Overview

The Arduino MC V3.0 RS232 library consists of different components offering different levels of abstraction:

component description

MCUart Open and configure the actual interface.

Send messages received from higher layers adding the prefix and suffix characters using

Serial1.write().

Receive characters using Serial1.read() and try to build messages out of it by

scanning for a prefix character “S”, a message length and a suffix character “E”.

Notify higher layer services when a complete message has been received.

MsgHandler Registers at the MCUart.

Check the CRC on messages received from the MCUart. Only message having a valid

CRC will be distributed to higher layers of the stack.

Add the CRC to messages to be sent before handing them over to the MCUart.

Implements a semaphore to block multiple Drives to use the interface at the same time.

MCTimer Abstract timer service for cyclic actions.

Not used in the library at the moment.

SDOHandler Must be registered at the MsgHandler.

Creates SDO request messages (read or write a parameter) and handles the response

of the drives.

Implements the complete SDO service of a single drive.

Expedited transfer of the complete data in a single exchange is supported only.

MCNode Access the status- and controlword of a single drive by creating the read- and write

requests.

Uses the SDO service via SDOHandler to read the statusword.

Uses the controlword service to write to a drives controlword.

MCDrive Uses its SDOHandler and the MCNode component to implement services on drive level

like enabling or disabling, moving to a position or at an intended speed.

Implements the main interface for a user of this library.

The relations between the software components are detailed Figure 4. Up to 4 MCDrive components can

register at a single MSGHandler component using the default of the library which is also the max recom-

mended size of these small network configurations.

Table 2 components of the Arduino MC V3.0 RS232 library

Faulhaber Product Application Note 191 Page 6 of 37

MsgHandling

MCUART

Open():void

Regsiter_OnRxCb():void

Update():void

WriteMsg():void

MsgHandler

Open():void

Regsiter_OnRxSDO():void

Regsiter_OnRxSys():void

SendMsg():void

Update():void

1

«Usage»

System::Serial
«Subsy stem»

Drive

MCDrive

DisableDrive():v...

EnableDrive():void

SetNodeId():void

SetOpMode():void

StartAbsMove()...

MCNode

CheckComState():void

PullSW():void

ResetComState():void

SendCW():void

SendReset():void

1

1

SDOHandler

CheckComState():void

OnRxHandler():void

ReadSDO():void

ResetComState():void

WriteSDO():void

1

1

1

System::MCTimer

hwPeriod:int

11

1

System::ISR_Timer

run():void

SetTimeout():void

SetTimer():void

Figure 4 Class diagram of the embedded RS232 library Rev A

Faulhaber Product Application Note 191 Page 7 of 37

Behavior of the Library

There are three major use-cases of the library components.

Create the instances

Even in RS232-network mode the drives share a single RS232 interface. On the host side the library is always

using a single instance of the MCUart.cpp which is a part of the MsgHandler.cpp class. MCUart is associated

with MsgHander.cpp forming a composition. In any application it is sufficient to include MsgHandler.h and

create a single instance of the MsgHandler. No need to care for MCUart.h.

MCDrive and its sub-classes are associated to a single instance of the MsgHandler. To use it, include

MCDrive.h and create at least on instance of MCDrive.

Up to 4 instances of the MCDrive can be connected to the MsgHandler. During the setup() the instances

must be connected to the MsgHandler explicitly.

//--- defines ---

//--- includes ---
#include <MCTimer.h>
#include <MsgHandler.h>
#include <MCDrive.h>
#include <stdint.h>

//--- globals ---

extern MCTimer OsTimer;
MsgHandler MCMsgHandler;
MCDrive Drive_A;

void setup() {
 // Debug Port
 Serial.begin(500000);
 //here we really start
 MCMsgHandler.Open(115200);
 Drive_A.SetNodeId(DriveIdA);
 Drive_A.Connect2MCTimer(&OsTimer);
 Drive_A.Connect2MsgHandler(&MCMsgHandler);
}

Code 3 start and initialization using the Arduino MC V3.0 RS232 library

Faulhaber Product Application Note 191 Page 8 of 37

Send a basic request using SDOHandler and MCNode

The MC V3.0 RS232 protocol defines a couple of services which are identified by the command code in the

4th byte of any command frame.

This library implements read and write access to standard drive parameters via the SDO Read and SDO Write

which is handled by the SDOHandler.cpp.

Access to the Controlword as well as to the Statusword and receiving of asynchronous Boot-up and EMCY

are implemented via MCNode.cpp.

Each MCNode.cpp includes a single instance of a SDOHandler and a MCNode by means of composition.

Therefore they don’t have to be taken care of in any application. Creating an instance of the MCDrive will

include the services.

To send a SDO read- or write request the methods SDOHandler::ReadSDO() and SDOHandler::WriteSDO()

must be called cyclically. Internally they implement a step-sequence where the real request is sent out only

if SDOHandler is in eIdle state and ends up in eDone-state if successful or eError-state if not.

After the request has been sent successfully a timer is started to implement a timeout behavior to either re-

send the request if no response is received (eRetry) or finally end up in an error state (eError).

Meanwhile the application code in the loop() can be executed over and over until a response finally arrives

or in a multi-axis configuration even until the request was really sent.

Table 3 Structure of a MC V3.0 RS232 protocol frame

Table 4 List of services implemented in the library

Faulhaber Product Application Note 191 Page 9 of 37

Using these services has to ensure to cyclically call the SDOHandler::ReadSDO() or SDOHandler::WriteSDO()

until they finally end up in the eDone state.

The simplest example is the MCDrive::SetOpMode(int8_t OpMode) where a single parameter – the

OpMode – is written to object 0x6060.00 : Modes of operation of the drive.

DriveCommStates MCDrive::SetOpMode(int8_t OpMode)
{

 if(SDOAccessState == eDone)
 {
 ThisNode.ResetComState();
 SDOAccessState = eIdle;
 OpModeReported = OpModeRequested;
 RxTxState = eMCDone;

 #if(DEBUG_DRIVE & DEBUG_SetOpMode)
 Serial.println("Drive: OpMode set ");
 #endif

eIdle

eWaiting

sent?

eRetry

/MsgHandler->SendMsg()

eDone

OnRxHandler()

Rx expected &&

correct

eError

[TORetryCounter < TORetryMax]

[else]

onTimeout()

/startTimeout

ResetComState()

init()

[BusyRetryCounter > BusyRetryMax]

[else]

yes no

yes no

Figure 5 Step-Sequence of SDO access

Faulhaber Product Application Note 191 Page 10 of 37

 }
 else
 {
 //skip the first access if not required
 if(OpModeReported == OpMode)
 RxTxState = eMCDone;
 else
 {
 OpModeRequested = OpMode;

 #if(DEBUG_DRIVE & DEBUG_SetOpMode)
 if(SDOAccessState == eIdle)
 {
 Serial.print("Drive: OpMode ");
 Seriel.print(OpMode, DEC);
 Serial.println(" Request");
 }

 #endif
 SDOAccessState = ThisNode.WriteSDO(0x6060, 0x00,
 (uint32_t *)&OpModeRequested,1);
 }
 RxTxState = eMCWaiting;
 }

 //always check whether a SDO is stuck final
 return CheckComState();
}

Here the new OpMode is sent only if it’s different that the last one sent to the drive. If it has to be sent, this

is done using the WriteSDO() method MCNode of the built-in MCDrive.

The blue lines are used for debugging purpose only. The actual code therefore is compact. To have this work

the SDOHandler component should ideally be in eIdle state when MCDrive::SetOpMode(int8_t OpMode) is

called the first time. The state of the request can be checked based on the return value of the method which

results in eMCDone when the request is finished.

Interact with the MCDrive component

The application code to call whatever method of the MCDrive is similar:

void loop() {
 // put your main code here, to run repeatedly:
 DriveCommStates NodeState;
 uint32_t currentMillis = millis();

 Drive_A.SetActTime(currentMillis);
 MCMsgHandler.Update(currentMillis);

 switch(driveStep)
 {
 …
 case 6:
 //set OpMode PV=3

Code 4 Usage of the SDOHandler within MCDrive::SetOpMode()

Faulhaber Product Application Note 191 Page 11 of 37

 if((Drive_A.SetOpMode(3)) == eMCDone)
 {
 driveStep = 7;
 Drive_A.ResetComState();
 }
 break;
 case 7:
 …
 }

 NodeState = Drive_A.CheckComState();
 if((NodeState == eMCError) || (NodeState == eMCTimeout))
 {
 Serial.println("Main: Reset NodeA State");
 Drive_A.ResetComState();
 //should be avoided in the end
 driveStep = 0;
 }
}

Within the loop the first calls would be to update the MsgHandler and check the MCDrive for time-outs by

setting the current time. The actual update of the behavior is done only by cyclically calling the methods of

MCDrive – here MCDrive::SetOpMode().

The key is to call MCDrive::whatever until the response equals eMCDone. Then switch to the next step of

the intended behavior.

Code 5 Usage of the MCDrive methods out of the main loop

Faulhaber Product Application Note 191 Page 12 of 37

Methods of MCDrive

Initialization

The methods listed under initialization would usually be used within the on-time setup().

void Connect2MsgHandler(MsgHandler *);

Is called once within setup() to connect this instance of the MCDrive to the MsgHandler(). The pointer to the

instance of the MsgHandler must be given like in Code 3.

void Connect2MCTimer(MCTimer *);

Connect the MCDrive to the MCTimer. The pointer to the MCTimer must be given. As of now the MCTimer

is not used within the MCDrive, it’s based on polling as the timer hasn’t been stable.

Can be omitted.

void SetNodeId(uint8_t);

Set the nodeId of the node to be addressed in the range of 1 … 127.

void SetTORetryMax(uint8_t);

Set a different number of retries due to a time-out. Counting restarts for any single access of either SDO-

Handler or MCNode. The default values are 1 retry each.

void SetBusyRetryMax(uint8_t);

Set a different number of retries due to a busy interface. Counting restarts for any single access of either

SDOHandler or MCNode. The default values are 1 retry each.

Cyclic Updates

The methods of cyclic updates are the main common methods used in combination with any behavioral

method.

void SetActTime(uint32_t);

Is to be called cyclically to check for any time-outs. Parameter is the latest value of the millis() call in the loop

- see Code 3.

DriveCommStates CheckComState();

Check the communication status of MCDrive to check whether any fatal error occurred (Code 5). Checking

the ComState cyclically can simplify the reaction to any of the fatal errors as they can be dealt with in a single

place compared to checking them as a possible response of any call.

void ResetComState();

Called to switch the communication state of the MCDrive instance back to eMCIdle – similar to the step-

sequence in Figure 5.

In Code 5 ResetComState() is used to reset the ComState after successfully ending up in eMCDone.

ResetComState would also be used to restart communication after a fatal error detected on a ComState

eMCError or eMCTimeout.

Faulhaber Product Application Note 191 Page 13 of 37

bool IsLive();

If a single drive is connected only it will send its boot-message, unless it’s configured to operate in net-mode.

A received boot message of this drive will result in a true response here.

Use this as an additional information only as messages can be disturbed in a RS232 system.

uint16_t GetLastError();

In case off a drive error the drive can send an EMCY message. EMCY messages are asynchronous and can’t

be sent in a net-mode configuration.

If an EMCY message has been received the received error code can be read out via this call.

DriveCommStates SendReset();

Not implemented yet.

User Interface to OpModes

The methods to start a move or change parameters of a drive will return a DriveCommState. Internally all

these methods again implement a simplified version of the step sequence in Figure 5.

States would be:

DriveCommState Reached when

eMCIdle The initial state or after a ResetComState()

eMCWaiting After a command has been started but not done

eMCBusy Not used so far

eMCDone After a command has been completed

eMCError Reached only if any of the lower layers ends up in an error state

eMCTimeout Reached only if any of the lower layers ends up in a timeout state

DriveCommStates UpdateDriveStatus();

Will update the local copy of the Modes of Operation Display value as well as the local copy of the status

word.

Could be used in the very beginning of whatever interaction to get an information of which status the drive

actually has.

Returns DriveCommState == eMCDone when finished.

uint16_t GetSW();

Returns the local copy of the statusword. No actual update done here.

DriveCommStates EnableDrive();

Tries to enable the drive by stepping through the state-machine. When DriveCommState == eMCDone the

drive is in operational state.

Faulhaber Product Application Note 191 Page 14 of 37

If the drive fails to enable due to a blocking error like an out of range supply voltage no error will occur, but

the call will not reach the eMCDone state. A time-out implemented around the EnableDrive() might be an

option then.

EnableDrive() will try to clear the drive from the error state of the drive state-machine if necessary.

Returns DriveCommState == eMCDone when the drive reaches the operation enabled state.

DriveCommStates DisableDrive();

Disables the drive by sending a disable voltage command. The drive is not stopped actively in such a case. If

it must be stopped, use StopDrive().

Returns DriveCommState == eMCDone when the drive reaches the switch on disabled state.

DriveCommStates StopDrive();

Stops the drive by switching into the stopped state of the drive state-machine. Depending on the configura-

tion of the Quick-Stop behavior the drive either remains in the stopped state or does an automatic transition

into the switch on disabled state after reaching 0-speed.

Either way it can be re-enabled by calling EnableDrive().

Returns DriveCommState == eMCDone when the drive ends up in stopped state or in switch on disabled

state.

DriveCommStates SetOpMode(int8_t);

Set the Mode of Operation parameter of the drive. Does not check whether the requested OpMode is a valid

one and does not check whether the Modes of Operation Display reflects the requested OpMode.

Returns DriveCommState == eMCDone when the write access to the Mode of Operation parameter is fin-

ished.

DriveCommStates SetProfile(uint32_t, uint32_t, uint32_t, int16_t);

Set a new set of profile parameters. The sequence of the parameters is:

 Profile Acceleration (0x6083)

 Profile Deceleration (0x6084)

 Profile Velocity (0x6081)

 Motion Profile Type (0x6086)

Returns DriveCommState == eMCDone when the write access to all parameters is finished.

DriveCommStates StartAbsMove(int32_t, bool);

Switch the drive to PP mode, set a new absolute target position and start the move.

This is a move to a defined position within the application.

The first parameter is the absolute target position in user scaling according to the factor group.

Second parameter flags whether the new move has to be started immediately, even when a preceding move

is still active (immediate == true) or if it shall start only after the preceding move has been finished.

Returns DriveCommState == eMCDone when the drive acknowledged the command. This usually is: the

drive actually started the move. To check whether the last target position has been reached call IsInPos().

Faulhaber Product Application Note 191 Page 15 of 37

DriveCommStates StartRelMove(int32_t, bool);

Switch the drive to PP mode, set a new relative target position and start the move.

A relative move does not end up at a specific position within the application but will move the given distance

starting from either the actual position or the last target position. Which one is going to be the base is con-

figured within the drive using the OpModeOptions parameter 0x233F.

The first parameter is the distance in user scaling according to the factor group.

Second parameter flags whether the new move has to be started immediately, even when a preceding move

is still active (immediate == true) or if it shall start only after the preceding move has been finished.

Returns DriveCommState == eMCDone when the drive acknowledged the command. This usually is: the

drive actually started the move. To check whether the last target position has been reached call IsInPos().

DriveCommStates ConfigureHoming(int8_t);

Configures a homing method via 0x6098. Does not start the homing.

In many cases the switch configuration in an application does not change. It’s recommended to pre-config-

ure the homing method using the MotionManager and during run-time only start the pre-configured hom-

ing.

Returns DriveCommState == eMCDone when the write access to the Homing Method parameter is finished.

DriveCommStates StartHoming();

Switches the drive to homing mode and starts whatever homing method has been configured. Does not wait

for a homing being completed successfully.

Returns DriveCommState == eMCDone when the drive has been switched to homing mode and the start flag

in the control word has been given a rising edge.

DriveCommStates MoveAtSpeed(int32_t);

Switches the drive to PV mode and sets the new target speed as commanded. The target velocity is to be

scaled according to the settings of the factor group. For a rotating motor the default is in min-1, for a linear

motor the default in mm/s.

Returns DriveCommState == eMCDone when the drive has been switched to PV mode and new target ve-

locity has been successfully written to 0x60FF.

DriveCommStates IsInPos();

Checks the statusword of the drive cyclically. The actual cycle time of checking the status is configured within

the MCDrive.cpp via PullSWCycleTime which defaults to 20ms.

Returns DriveCommState == eMCDone when the drive signals the last position being reached by setting the

target reached flag within the status word.

In a sequence of moves which have been sent to the drive without explicitly waiting for a first target being

reached, the flag will only be set after the last move has been completed. Details about this behavior can be

found in the Drive Functions manual.

DriveCommStates IsHomingFinished();

Checks the statusword of the drive cyclically. The actual cycle time of checking the status is configured within

the MCDrive.cpp via PullSWCycleTime which defaults to 20ms.

Faulhaber Product Application Note 191 Page 16 of 37

Returns DriveCommState == eMCDone when the drive signals the homing sequence being finished success-

fully.

As of firmware revision L this final check does not work combined with homing method 37!

Methods for Debugging

The following methods can be utilized to follow the actions below the hood of the MCDrive.

CWCommStates GetNodeState();

Returns the DriveCommState of the MCDrive instance.

SDOCommStates GetSDOState();

Returns the SDOCommState of the built-in SDOHandler.

CWCommStates GetCWAccess();

Returns the CWCommState of the built-in MCNode.

uint8_t GetAccessStep();

Complex behavior like in SetProfile or StartAbs/RelMove is again implemented using a step-sequence. The

actual step the MCDrive is in can be checked using this call.

Faulhaber Product Application Note 191 Page 17 of 37

Step by Step Debugging

Using the Serial Monitor

The debugging capabilities of the original Arduino environment are very basic. While it is reasonable not to

use breakpoints in a real-time environment there are of course many cases even in a real-time environment

where breakpoints could be used safely.

The more or less only run-time access available is the serial monitor which was a typical approach back when

the Arduino environment has been created.

In case of a real-time communication between an Arduino and a MotionController breakpoints will most

likely not work. So, we are using the main serial port here for debugging.

In each of the modules there are a lot Serial.print() or Serial.println() statements which can be activated by

instrumenting the code.

Instrumentation is done at the head of each module using the same approach. For the MCDrive.cpp it looks

like:

#define DEBUG_RXMSG 0x0001

#define DEBUG_TO 0x0002

#define DEBUG_ERROR 0x0004

#define DEBUG_UPDATE 0x0010

#define DEBUG_MoveSpeed 0x0020

#define DEBUG_ENABLE 0x0040

#define DEBUG_DISABLE 0x0080

#define DEBUG_STOP 0x0100

#define DEBUG_MOVEPP 0x0200

#define DEBUG_HOME 0x0400

#define DEBUG_RWPARAM 0x0800

#define DEBUG_PULLSW 0x1000

#define DEBUG_DRIVE (DEBUG_TO | DEBUG_ERROR)

Within each method the Serial.print() statements are encapsulated by preprocessor #if #endif statements

like:

#if(DEBUG_DRIVE & DEBUG_UPDATE)
…
#endif

These are the blue lines in Code 4.

The relevant section of the behavior can thus be followed using the serial monitor of the Arduino environ-

ment by a fitting configuration of the respective DEBUG_xxx of the modules in question. By default, all mod-

ules will report fatal errors only.

Timing

There are a couple of parameters which are defined in the different levels to tailor the access to the RS232.

If necessary all of these parameters can be adjusted to the used baud-rate and application requirements in

terms of timing.

Code 6 Instrumentation of MCDrive for debugging

Faulhaber Product Application Note 191 Page 18 of 37

Module Parameter and default in ms

MCUart.cpp MsgTimeout = 10

After each successfully received character this timeout is restarted. If there

is no more character but the frame has not been fully received the recep-

tion is reset and the characters are discarded.

MsgHandler.cpp MsgHandlerMaxLeaseTime = 20

Any access to the Msghandler will lock the MsgHandler until a response is

received. If the response is not received within the MaxLeaseTime the

MsgHandler is unlocked automatically.

SDOHandler.cpp SDORespTimeOut = 20

Maximum waiting time for a response to either a SDO read request or a

write request. After time-out a retry would be started. After too many re-

tries the access would end up in eTimeout state.

MCNode.cpp CwRespTimeOut = 20

The handshake to a controlword write access is expected in at max this

setting. After 50% of the time, the command is re-sent to the drive.

A first response is the mandatory handshake for any command sent to the

drive.

MaxSWResponseDelay = 50

After a new command has been sent to the controlword the drive could

react by changing the statusword e.g. when the drive is being enabled or

disabled.

The reception of an updated statusword after an updated controlword can

be waited for and if necessary even polled. MCNode::SendCw() does have

a parameter for the time-out of the statusword response. If this non-zero

the statusword will be polled after the given time if not received asynchro-

nously.

MCDrive.cpp MaxSWResponseDelay = 50

Is the time used for calls to MCNode::SendCW() if an explicit response is

expected.

PullSWCycleTime = 20

Is the time used for cyclic polling the statusword e.g. when checking for a

target being reached.

Faulhaber Product Application Note 191 Page 19 of 37

Examples – Using the Library

Single Axis example

Connect2MC_1Node is a simple example which deals with a single instance of MCDrive as in Code 3.

A step-sequence is implemented within loop() where the drive is cycled through different OpModes.

drivestep = 1

drivestep = 2

drivestep = 3

drivestep = 4

drivestep = 5

drivestep = 6

drivestep = 7

drivestep = 8

drivestep = 9

drivestep = 10

drivestep = 0

UpdateDriveStatus()

DisableDrive()

EnableDrive()

ConfigureHoming()

StartHoming()

IsHomingFinished()

MoveAtSpeed(100)

StartTime

Check Timeout

MoveAtSpeed(-100)

StartTime

Check Timeout

drivestep = 11

drivestep = 12

drivestep = 13

StartAbsMove(50000)

IsInPos()

StartAbsMove(0)

IsInPos()

drivestep = 14

SetProfile()

Figure 6 Step-Sequence of the single axis example

Faulhaber Product Application Note 191 Page 20 of 37

What’s the timer being used for?

Both examples – 1Node or 4Nodes use the MCTimer to execute a simple independent behavior – here tog-

gling the built-in LED on pin 13 of the Arduino. Otherwise the timer is not used in the libraries. Using such

an approach some kind of parallel processing or time-out for the main application could easily be added.

Faulhaber Product Application Note 191 Page 21 of 37

Rev C - not using a reference to a timer library – pure Arduino feeling

Use of a hardware timer is difficult in an Arduino environment as there meanwhile is a couple of

different platforms having different µControllers and therefore different hardware capabilities.

Therefore, if you intend to use the MC V3.0 RS232 lib “as is” in an Arduino environment it might be

better not to use the version Rev A where a timer is referenced. Within the code archive there is a

second version of the libraries which do longer not refer to the timer.

Rev C adds a few useful methods to MCDrive.h which are:

DriveCommState WriteObject(uint16_t, uint8_t, int32_t, uint8_t);

Write a value to an object of the MC V3.0. The parameters are the index, the sub index, the actual value

which must casted to an int32_t to be universal and the length of the payload in bytes.

Returns DriveCommState == eMCDone when the parameter has been written successfully.

DriveCommState UpdateActValues();

Updates to local copy of the drives actual speed and position value.

Returns DriveCommState == eMCDone when the parameter have been updated successfully.

int32_t GetActualPosition();

Returns the value of the local copy of the drives actual position. UpdateActValues() should be called before

the access is used.

MsgHandling

MCUART

Open():void

Regsiter_OnRxCb():void

Update():void

WriteMsg():void

MsgHandler

Open():void

Regsiter_OnRxSDO():void

Regsiter_OnRxSys():void

SendMsg():void

Update():void

1

«Usage»

System::Serial
«Subsy stem»

Drive

MCDrive

DisableDrive():v...

EnableDrive():void

SetNodeId():void

SetOpMode():void

StartAbsMove()...

MCNode

CheckComState():void

PullSW():void

ResetComState():void

SendCW():void

SendReset():void

1

1

SDOHandler

CheckComState():void

OnRxHandler():void

ReadSDO():void

ResetComState():void

WriteSDO():void

1

1

Figure 7 Class diagram of the embedded RS232 library Rev C

Faulhaber Product Application Note 191 Page 22 of 37

int32_t GetActualSpeed();

Returns the value of the local copy of the drives actual position. UpdateActValues() should be called before

the access is used.

DriveCommState UpdateMotorTemp();

Updates to local copy of the drives estimated motor temperature.

Returns DriveCommState == eMCDone when the parameter has been updated successfully.

int32_t GetActualMotorTemp();

Returns the value of the local copy of the motor temperature. UpdateMotorTemp() should be called before

this access is used.

DriveCommSate UpdateDriveErrors();

Updates to local copy of the errors reported by the drive in 0x2320.00.

Returns DriveCommState == eMCDone when the parameter has been updated successfully.

int32_t GetActualDriveErrors();

Returns the value of the local copy of the drive error. UpdateDriveErrors() should be called before this access

is used.

Single Axis example

Connect2MC_1Node is the same simple example as with Rev A but here without any reference to the timer..

4axis example

Connct2MC_4Nodes is doing the very same as the single axis example but here using 4 nodes. The 4 MCs

have to be connected to the Arduino according to Figure 1 and have to be preconfigured for the same RS232

baud-rate, different node-Ids and RS232 net-mode enabled.

Within the sketch there are now for instances of the MCDrive. To clean the code a sperate method and code

structure is used to organize e.g. different values for the changing profile parameters of the 4 nodes.

Faulhaber Product Application Note 191 Page 23 of 37

Using Rev C on a Nano 33 IoT

Rev C has been successfully tested on an Arduino Nano every which is based on a ATMega4809

as well as on an Arduino Nano 33 IoT which is based on an Arm® Cortex®-M0 32-bit SAMD21.

Using the Nano 33 IoT an example was created which wraps a MQTT server around a MC V3.0.

The original code for the MQTT server was taken out of the examples for the Arduino platform.

The Nano 33 IoT wraps around a SoC Wi-Fi module, the u-blox NINA-W102.

To use it add the WiFiNINA library.

The PubSubLibrary is used to implement the MQTT protocol.

A few samples of the implementation are included here to directly explain the idea. The complete

example is included in the software archive.

The main idea is the Arduino registering at the MQTT broker to receive commands for the drive via

the topic "Nano/MC/Ctrl/Control” and new target values via either "Nano/MC/Ctrl/Tar-

getPos" or "Nano/MC/Ctrl/TargetSpeed".

Vice versa it’s going to update its latest values via the pubTopicXxx in Code 7.

The callback in Code 8 must be registered at the MQTT client and will be called whenever one of

the subscribed topics is received. Here the commands and parameters are extracted from the text-

based payloads which are then checked in updateDriveComm() in Code 9.

Figure 8 Operating Panel of the MQTT example by NodeRed

Faulhaber Product Application Note 191 Page 24 of 37

Within updateDriveComm() whenever a new command has been received via

"Nano/MC/Ctrl/Control” and the drive communication is in idle state the latest command is set

to be executed next via the switch-case statement.

To actually drive the communication updateDriveComm() has to be called cyclically within the loop()

as well as the loop() of the mqtt client - Code 12.

After each command the communication handler returns to the idle state where a next command

could be processed.

If an update of actual values was requested these are published directly to the related topics before

returning to the idle state.

When in idle state the actual speed and position of the drive are updated cyclically too by automat-

ically switching to the handler of an externally triggered update request.

The actual code for initialization and updating the states is summarized in Code 12.

The frontend then was designed using NodeRed (Figure 9). The blue boxes are taken out of the

dashboard library and are visible on the panel in Figure 8. The raspberry colored ones are the ones

connecting to the MQTT server either by subscription (left) or publishing (right).

Figure 9 Flow of the monitoring panel

Faulhaber Product Application Note 191 Page 25 of 37

//--- defines ---
#define LED_PIN LED_BUILTIN

//--- includes ---
#include <WiFiNINA.h>
#include <PubSubClient.h>
#include "WiFiAccess.h"
#include <MsgHandler.h>
#include <MCDrive.h>
#include <stdint.h>

//--- globals ---
//--- 4 WiFi / MQTT ----

const char* ssid = networkSSID;
const char* password = networkPASSWORD;

const char* mqttServer = mqttSERVER;
const char* mqttUsername = mqttUSERNAME;
const char* mqttPassword = mqttPASSWORD;

//subscribe to all /MC/* topics
char MCControlSubTopicAll[] = "Nano/MC/Ctrl/+";

//payload[0] will be the requested state
char MCControlSubTopic[] = "Nano/MC/Ctrl/Control”;
//payload[] is a numeric value of speed or position
char MCControlTargetSpeed[] = "Nano/MC/Ctrl/TargetSpeed";
char MCControlTargetPos[] = "Nano/MC/Ctrl/TargetPos";

//payload will be "EN" or "DI"
char MCStatePubTopic[] = "Nano/MC/State";
//payload are the current values
char pubTopicDriveError[] = "Nano/MC/DriveErrors";
char pubTopicPosition[] = "Nano/MC/ActPosition";
char pubTopicSpeed[] = "Nano/MC/ActSpeed";
char pubTopicMotorTemp[] = "Nano/MC/MotorTemp";

WiFiClient wifiClient;
PubSubClient mqttClient(wifiClient);

Code 7 Header of the MQTT example

Faulhaber Product Application Note 191 Page 26 of 37

void callback(char* topic, byte* payload, unsigned int length)
{
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i = 0; i < length; i++)
 {
 Serial.print((char)payload[i]);
 }
 Serial.println();

 if(identifyTopic(topic,subTopic))
 {
 // Switch on the LED if 1 was received as first character
 if ((char)payload[0] == '1')
 {
 digitalWrite(LED_PIN, HIGH);
 ledState = 1;
 char payLoad[1];
 itoa(ledState, payLoad, 10);
 mqttClient.publish(pubTopic, payLoad,true);
 }
 else
 {
 digitalWrite(LED_PIN, LOW);
 ledState = 0;
 char payLoad[1];
 itoa(ledState, payLoad, 10);
 mqttClient.publish(pubTopic, payLoad,true);
 }
 }
 if(identifyTopic(topic,MCControlSubTopic))
 {
 requestedDriveStep = (uint16_t)extractValue(payload,length);
 }
 if(identifyTopic(topic,MCControlTargetSpeed))
 {
 TargetSpeed = extractValue(payload,length);
 }
 if(identifyTopic(topic,MCControlTargetPos))
 {
 TargetPos = extractValue(payload,length);
 }
}

Code 8 The callback extracting the parameters out of the incoming messages

Faulhaber Product Application Note 191 Page 27 of 37

void updateDriveComm()
{
static bool isAutoUpdate;
static uint32_t lastAutoUpdate = 0;
uint32_t currentMillis = millis();
DriveCommStates NodeState = Drive_A.CheckComState();

 Drive_A.SetActTime(currentMillis);
 MCMsgHandler.Update(currentMillis);

 if((NodeState == eMCError) || (NodeState == eMCTimeout))
 {
 //Serial.println("Main: Reset NodeA State");
 Drive_A.ResetComState();
 //should be avoided in the end
 actDriveStep = 0;
 }

 switch(actDriveStep)
 {
 case 0:
 //do nothing - that's the idle state
 if(requestedDriveStep > 0)
 {
 //start handling of the request
 actDriveStep = requestedDriveStep;
 //reset request again
 requestedDriveStep = 0;
 isAutoUpdate = false;
 Serial.print("Start ");
 Serial.println(actDriveStep);
 }
 else
 {
 //no request pending
 //check for timeout of auto-update
 if(lastAutoUpdate + updateRate < currentMillis)
 {
 actDriveStep = 20;
 lastAutoUpdate = currentMillis;
 isAutoUpdate = true;
 }
 }
 break;

Code 9 Handling the commands to the drive via the drive library / part A

Faulhaber Product Application Note 191 Page 28 of 37

 case 1:
 //get a copy of the drive status
 if((Drive_A.UpdateDriveStatus()) == eMCDone)
 {
 //switch back to idle state
 actDriveStep = 0;
 Drive_A.ResetComState();
 Serial.println("Main: Status updated");
 }
 break;
 case 2:
 //…

void setup_drive()
{
 MCMsgHandler.Open(115200);
 Drive_A.SetNodeId(DriveIdA);
 Drive_A.Connect2MsgHandler(&MCMsgHandler);
}

void setup()
{
 pinMode(LED_PIN, OUTPUT);
 Serial.begin(500000);
 /*
 while(!Serial)
 ; */
 setup_wifi();
 mqttClient.setServer(mqttServer, 1883);
 mqttClient.setCallback(callback);

 setup_drive();
}

void loop()
{
 if (!mqttClient.connected())
 {
 reconnect();
 }
 mqttClient.loop();

 updateDriveComm();
}

Code 10 Handling the commands to the drive via the drive library / part B

Code 11 configure the drive libary once

Code 12 The setup() and loop() of the example

Faulhaber Product Application Note 191 Page 29 of 37

Customization of the Library

On a bare metal µController the lowest layer – here MCUart.cpp could be a little different.

Any implementing the Uart in such an environment might could have:

UART ISR

An interrupt service routine to handle the Transmit Buffer Empty (TXE) interrupt, the Data Received

(RXNE) interrupt and any Error interrupt. This will be static C function not taking any parameters as

the ISR is not getting any.

A class which implements the same behavior as the MCUart described here but not being updated

by polling but using the TXE to byte by byte send messages until the complete message is sent and

the RXNE to actually fetch the data from the UART data register.

TXE will only be active, when there is a message to be sent RXNE will always listen.

The low level ISR will then have to call one of the methods out of the Uart class to actually handle

the TX or RX. Code 14 is an example implementation using C and a C-struct to implement OO like

handling.

Here O_Usart2Isr in Code 13 is a C struct which contains data being used to create an abstract

access to the Usarts of the used STM32 device. O_Usart2Isr.itsC_Usart then is a pointer to

the struct C_Usart C struct in Code 15 which is a class like collection of data for a single

instance of the C_Usart.

// Provides the ISR routine needed for UART2

struct O_Usart2Isr_t {

 //

 struct C_Usart itsC_Usart; /*## link itsC_Usart */

};

C_Usart.c then implements methods which are applied to the instance.

The pointer to the actual instance of the C_Usart which is associated with the actual peripheral

(here USART2) is stored in a static instance O_Usart2Isr. Its actual ISR handler

USART2_IRQHandler (Code 14) – a name defined by the ST environment – uses this pointer to

not only call the class-aware handler C_Usart_IrqHander() (Code 16) but also to pass this

pointer.

Code 13 C-data structure O_Usart2Isr to handle the low-level interrupt

Faulhaber Product Application Note 191 Page 30 of 37

//low level ISR to call the actual handler within the Uart class

void USART2_IRQHandler(void) {

 // call according C_Usart instance handler

 C_Usart_IrqHandler(&(O_Usart2Isr.itsC_Usart));

}

struct C_Usart {

 // Containes the base address of this USART

 USART_TypeDef* pSTM32Reg;

 // Receive buffer of USART

 Pk_Usart_TSerialMsg rxBuf;

 // Index in receive buffer, where next received character will be

stored

 uint8_t rxIdx;

 // Number of expected characters for a complete message

 uint8_t rxSize;

 // Transmitt buffer of USART

 Pk_Usart_TSerialMsg txBuf;

 // Index in transmit buffer, from where next character will be trans-

mitted

 volatile uint8_t txIdx;

 // Number of characters, which will be transferred

 volatile uint8_t txSize;

 // Containes the internal node number of USART.

 // Msg will only transfered to C_RS232 if received node number is

equal to internal node number

 uint8_t nodeID;

 // Holds ObjPtr and FctPtr of message receive callback function

 Pk_HAL_TFunctor msgRcvCb;

 // Holds ObjPtr and FctPtr of messagetransmitted callback function

 Pk_HAL_TFunctor msgTrmCb;

 // threshold for any Rx time-out

 uint8_t thReceiveTo;

 // threshold for receiving a complete message

 uint32_t receiveToValue;

 // handle the actual state of any message to be transmitted

Code 14 Low level ISR to call the handler within Uart.c

Faulhaber Product Application Note 191 Page 31 of 37

 volatile C_Usart_TTxState txState;

 // link to the instance of the GpTimer to be used for the time-out

 struct C_GpProgTimer* itsC_GpProgTimer;

};

Main elements within the struct C_Usart in Code 15 are the Rx and Tx buffers and their read and

write pointers, an element used to track the status of any ongoing transmission and the call-backs

to higher layers when either an ongoing transmission is completed or a compete message has been

received.

The actual handling of any Usart interrupt is done within C_Usart_IrqHandler a method within

C_Usart.c. It implements a OO like handling within C. Every method therefore needs at least a point

to the actual instance of C_Uart – the one to be used.

The ISR handler reacts to either:

 A character has been received.
It’s passed over to RcvdChar2Buffer(me, rcvChar) which implements more or less

the identical treatment like the Update in the MCUart.cpp Arduino lib. Here however, as the
implementation does not use polling a real timer resource has to be used to handle the
time-outs.

 TX buffer is empty – a next character can be sent
If there still is a character in the Tx buffer it is passed to the Uart, otherwise the transmis-
sion will wait for the last character to actually been sent.

 Last Character has been sent
The ongoing Tx state if idle again and the next layer of software is informed using the call-
back. Higher layer can use this information to pass a next message if there is a buffer of
messages to be sent.

// the actual class aware ISR handler of C_Usart.c

void C_Usart_IrqHandler(C_Usart* const me) {

 uint8_t rcvChar;

 uint32_t statusReg = me->pSTM32Reg->SR;

 if ((statusReg & USART_SR_RXNE) != 0)

 {

 // data received,

 // read data register, clears error flags at the same time

 rcvChar = me->pSTM32Reg->DR;

 if ((statusReg &

 (USART_SR_PE // parity error

 | USART_SR_FE // framing error

 | USART_SR_NE) // noise detected

) == 0)

 {

 // no errors detected, accept the received character

Code 15 Example C-struct to implement a OO like implementation of a class C_Usart.

Faulhaber Product Application Note 191 Page 32 of 37

 RcvdChar2Buffer(me, rcvChar);

 }

 }

 if (((statusReg & USART_SR_TXE) != 0) && (me->txState == eTxBusy))

 {

 // Transmit data register empty

 if (me->txIdx < me->txSize)

 {

 // TXE/TC is cleared on write to data register

 me->pSTM32Reg->DR = me->txBuf.u8Data[me->txIdx++];

 }

 else if (me->txIdx == me->txSize)

 {

 // all Tx bytes processed

 // disable TXE interrupts

 me->pSTM32Reg->CR1 &= ~USART_CR1_TXEIE;

 // enable Transmission complete IR

 me->pSTM32Reg->CR1 |= USART_CR1_TCIE;

 me->txState = eTxWaiting4TC;

 }

 }

 if (((me->pSTM32Reg->CR1 & USART_CR1_TCIE) != 0)

 && ((statusReg & USART_SR_TC) != 0))

 {

 // Last byte is transmitted to Line by UART

 // HW (Transmit FIFO empty)

 // -> mask TC IR again

 me->pSTM32Reg->CR1 &= ~USART_CR1_TCIE;

 // reset state to indicate no transmit ongoing

 // me->txBusy = false;

 me->txState = eTxIdle;

 // call message transmitted handler

 if (me->msgTrmCb.FctPtr != NULL)

 {

 me->msgTrmCb.FctPtr(me->msgTrmCb.ObjPtr);

 }

 }

}

Code 16 the actual handler within C_Usart.c

Faulhaber Product Application Note 191 Page 33 of 37

The last example here is the C_Usart method to be called when a next message is to be transferred.

Here the complete message is copied into the Tx-buffer. So, any preceding transmission using this

buffer must have been finished and Tx-state has to be idle – something the higher layer will have

to check before calling C_Usart_WriteMsg(). The actual transmission is started by enabling the

Tx interrupt which will then detect an empty Tx data register and call the C_Usart_IrqHandler().

// handler to actually copy messages to be transmitted into the Tx buffer

and start the Tx interrupt

void C_Usart_WriteMsg(C_Usart* const me, const Pk_Usart_TSerialMsg*

pSerialMsg) {

 if (me->pSTM32Reg != NULL)

 {

 // copy raw data to txbuf of C_Usart

 memcpy(&me->txBuf.u8Data[0],

 &pSerialMsg->u8Data[0],

 pSerialMsg->Hdr.u8Len + 1);

 // add prefix and suffix chars

 me->txBuf.u8Data[0] = PREFIX;

 me->txBuf.u8Data[pSerialMsg->Hdr.u8Len + 1] = SUFFIX;

 // set number of chars to be transmitted

 // this will be used during the actual transmission

 me->txSize = pSerialMsg->Hdr.u8Len + 2;

 // reset txIdx

 me->txIdx = 0;

 //now flag the Tx to be busy

 me->txState = eTxBusy;

 // Used interrupts: TXEIE and RXNEIE (always set)

 // TE transmits idle frame for 1 bit time and generates first

interrrupt

 me->pSTM32Reg->CR1 |= (USART_CR1_TXEIE | USART_CR1_TE);

 // interrupt to send out first character

 }

}

The interaction of the different classes and methods in such an interrupt-based message handling

scheme is illustrated in Figure 10. Any received character activates the bare-metal interrupt handler

of the Usart. It calls the class-aware IRQHandler of the C_Usart which adds the received char to

its Rx buffer via RcvdChar2Buffer().

Code 17 Write-handler of C_Usart.c

Faulhaber Product Application Note 191 Page 34 of 37

If the message was completely received the registered callback – here the C_MsgHandler_OnRx-

Handler() is called which could store the message and create an event for the next layer. Such

an event could be used to finally end the interrupt execution context. If no events available use a

flag which C_SDOHandler polls and reads the message to handle it out of the interrupt.

USART2 C_Usart C_GpProgTimer C_MsgHandler

incoming Char

RXNE Interrupt
USART2_IRQHandler()

_IRQHandler()

RcvdChar2Buffer()

_ReTriggerTo()

msgRcvCb: _OnRxHandler()

C_SDOHandler

Event: Response Recieved

Interrupt execution context ReadMsgData()

Figure 10 Sequence diagram of an interrupt based message handling

Faulhaber Product Application Note 191 Page 35 of 37

References

Arduino SerialEvent

https://www.arduino.cc/en/Tutorial/BuiltInExam-

ples/SerialEvent

FAULHABER manuals

https://www.faulhaber.com/en/support/technical-sup-

port/drive-electronics/documentation-for-drive-

electronics/

Arduino nano Every

https://store.arduino.cc/arduino-nano-every

Arduino nano 33 IoT

https://store.arduino.cc/arduino-nano-33-iot

Faulhaber Product Application Note 191 Page 36 of 37

Rechtliche Hinweise

Urheberrechte. Alle Rechte vorbehalten. Ohne vorherige ausdrückliche schriftliche Zustimmung der Dr. Fritz

Faulhaber & Co. KG darf diese Application Note oder Teile dieser unabhängig von dem Zweck insbesondere

nicht vervielfältigt, reproduziert, gespeichert (z.B. in einem Informationssystem) oder be- oder verarbeitet wer-

den.

Gewerbliche Schutzrechte. Mit der Veröffentlichung, Übergabe/Übersendung oder sonstigen Zur-Verfü-

gung-Stellung dieser Application Note werden weder ausdrücklich noch konkludent Rechte an gewerblichen

Schutzrechten, übertragen noch Nutzungsrechte oder sonstige Rechte an diesen eingeräumt. Dies gilt ins-

besondere für gewerbliche Schutzrechte, die mittelbar oder unmittelbar den beschriebenen Anwendungen

und/oder Funktionen dieser Application Note zugrunde liegen oder mit diesen in Zusammenhang stehen.

Kein Vertragsbestandteil; Unverbindlichkeit der Application Note. Die Application Note ist nicht Vertrags-

bestandteil von Verträgen, die die Dr. Fritz Faulhaber GmbH & Co. KG abschließt, und der Inhalt der Appli-

cation Note stellt auch keine Beschaffenheitsangabe für Vertragsprodukte dar, soweit in den jeweiligen Ver-

trägen nicht ausdrücklich etwas anderes vereinbart ist. Die Application Note beschreibt unverbindlich ein

mögliches Anwendungsbeispiel. Die Dr. Fritz Faulhaber GmbH & Co. KG übernimmt insbesondere keine

Gewährleistung oder Garantie dafür und steht auch insbesondere nicht dafür ein, dass die in der Application

Note illustrierten Abläufe und Funktionen stets wie beschrieben aus- und durchgeführt werden können und

dass die in der Application Note beschriebenen Abläufe und Funktionen in anderen Zusammenhängen und

Umgebungen ohne zusätzliche Tests oder Modifikationen mit demselben Ergebnis umgesetzt werden kön-

nen. Der Kunde und ein sonstiger Anwender müssen sich jeweils im Einzelfall vor Vertragsabschluss infor-

mieren, ob die Abläufe und Funktionen in ihrem Bereich anwendbar und umsetzbar sind.

Keine Haftung. Die Dr. Fritz Faulhaber GmbH & Co. KG weist darauf hin, dass aufgrund der Unverbindlich-

keit der Application Note keine Haftung für Schäden übernommen wird, die auf die Application Note und deren

Anwendung durch den Kunden oder sonstigen Anwender zurückgehen. Insbesondere können aus dieser

Application Note und deren Anwendung keine Ansprüche aufgrund von Verletzungen von Schutzrechten Drit-

ter, aufgrund von Mängeln oder sonstigen Problemen gegenüber der Dr. Fritz Faulhaber GmbH & Co. KG

hergeleitet werden.

Änderungen der Application Note. Änderungen der Application Note sind vorbehalten. Die jeweils aktuelle

Version dieser Application Note erhalten Sie von Dr. Fritz Faulhaber GmbH & Co. KG unter der Telefonnum-

mer +49 7031 638 688 oder per Mail von mcsupport@faulhaber.de.

Legal notices

Copyrights. All rights reserved. This Application Note and parts thereof may in particular not be copied,

reproduced, saved (e.g. in an information system), altered or processed in any way irrespective of the purpose

without the express prior written consent of Dr. Fritz Faulhaber & Co. KG.

Industrial property rights. In publishing, handing over/dispatching or otherwise making available this Appli-

cation Note Dr. Fritz Faulhaber & Co. KG does not expressly or implicitly grant any rights in industrial property

rights nor does it transfer rights of use or other rights in such industrial property rights. This applies in particular

to industrial property rights on which the applications and/or functions of this Application Note are directly or

indirectly based or with which they are connected.

No part of contract; non-binding character of the Application Note. The Application Note is not a constit-

uent part of contracts concluded by Dr. Fritz Faulhaber & Co. KG and the content of the Application Note does

not constitute any contractual quality statement for products, unless expressly set out otherwise in the re-

spective contracts. The Application Note is a non-binding description of a possible application. In particular

Dr. Fritz Faulhaber & Co. KG does not warrant or guarantee and also makes no representation that the pro-

cesses and functions illustrated in the Application Note can always be executed and implemented as

Faulhaber Product Application Note 191 Page 37 of 37

described and that they can be used in other contexts and environments with the same result without addi-

tional tests or modifications. The customer and any user must inform themselves in each case before con-

cluding a contract concerning a product whether the processes and functions are applicable and can be im-

plemented in their scope and environment.

No liability. Owing to the non-binding character of the Application Note Dr. Fritz Faulhaber & Co. KG will not

accept any liability for losses arising from its application by customers and other users. In particular, this

Application Note and its use cannot give rise to any claims based on infringements of industrial property rights

of third parties, due to defects or other problems as against Dr. Fritz Faulhaber GmbH & Co. KG.

Amendments to the Application Note. Dr. Fritz Faulhaber & Co. KG reserves the right to amend Application

Notes. The current version of this Application Note may be obtained from Dr. Fritz Faulhaber & Co. KG by

calling +49 7031 638 688 or sending an e-mail to mcsupport@faulhaber.de.

