
APPLICATIONNOTE 164

09.08.2023 Page 1 of 37

Codesys and FAULHABER V3.0 EtherCAT

Summary

This application note describes the necessary steps to control a FAULHABER MC V 3.0 ET ver-

sion using a CODESYS based PLC. The MC is connected via its EtherCAT port to the PLC.

Applies To

MC 5005 S ET, MC 5010 S ET, MC 5004 P ET and

MCS ET

Licensing

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation

GmbH, Germany.

Related FAULHABER Documents

Document Description

Motion Manager 6 Instruction Manual for FAULHABER Motion Manager PC software

Quick start description Description of the first steps for commissioning and operation of

FAULHABER Motion Controllers

Drive functions Description the operating modes and functions of the drive

Com Manual EtherCAT Description of the EtherCAT services implemented in a FAULHABER

MotionController

Description

The example shows a MC 5005 S ET operated in profile position mode controlled by a CODESYS

PLC. The PLC application will start or stop the drive and does alternating position steps between

two fixed absolute references while modifying the profile parameters in each step. It is created in

structured text (ST).

In this example a Raspberry PI (RasPi) is used as a PLC runtime environment. As of now the

runtime for the RaspPi can be downloaded free of charge out of the 3S Web shop (registration

required) and can be used for training and testing purpose. Restrictions apply however. The max-

imum on time of the runtime is 2h for the free version. There is no limit for the number of starts

however. And of course the RasPi is non hard real time environment, so a jitter in the timing is to

be expected. Nevertheless this is a convenient low cost way to test the capabilities of such a

combination which has been successfully tested with distributed clock synchronization down to

2ms communication cycle time.

Faulhaber Application Note 164 Page 2 of 37

The example has been implemented and tested for either a RasPi 2B or a 3B version.

The single Ethernet port of the RasPi has to be used for the EtherCAT interface. The access from

the engineering environment installed at a PC to the runtime at the RasPi requires a second net-

work interface. Therefore the RasPi has to be connected to the office network via either its

onboard WLAN (RasPi 3B) or a USB WLAN dongle (RasPi 2B).

Following the installation of the RasPi, the CODESYS engineering environment and the

CODESYS runtime are explained. These steps usually only have to be taken once at the very

beginning. In a second step the creation of an application is explained and an example application

is listed.

Figure 1 Test setup: Controller MC 5005 S ET + Motor 2250 BX4 + PLC RasPi 3B

Faulhaber Application Note 164 Page 3 of 37

Software Installation

Before stepping through the example here, some installations are required.

Configuration and first tests of the FAULHABER MotionController are done using the FAULHA-

BER MotionManager. The most recent version of the MotionManager can be downloaded directly

from the FAULHABER web page.

The CODESYS environment has to be downloaded from the 3S Webshop. All the mentioned

components are available free of charge. A registration for the web shop is required though.

Package Source Size

Setup_CODESYSV35SP10Patch2.exe

(CODESYS Development System)

3S Web shop 1 GB

CODESYS Control for Raspberry PI 3.5.10.20.package 3S Web shop 10 MB

OSCATBasic.package 3S Web shop 8 MB

raspberrypi_codesysv3_firststeps_xx.pdf 3S Web shop 1 MB

NOOBS Raspberry.org 1.5 GB

Install and configure the RasPi

Start with the installation of the NOOBS at the RasPi and configure it to at least have SSH ena-

bled. VNC can be used to remotely connect to the RasPi sparing the extra monitor and keyboard

for the PLC device.

Table 1 List of software components required for a CODESYS environment

Faulhaber Application Note 164 Page 4 of 37

SSH is used by the CODESYS engineering environment to install its runtime.

Install the CODESYS Environment

In a second step install the CODESYS Engineering Environment to your

PC. Here we used the V3.5 SP10. This is the main tool for creation of PLC

programs and visualizations. Installation will take some time and be pre-

pared to have additional components downloaded and installed to your

computer in this step (see Figure 3).

Figure 2 Raspberry Startup screen showing the system preferences. Additional connection

e.g. SPI might be enabled, if additional hardware is connected to the RasPi

Faulhaber Application Note 164 Page 5 of 37

After the installation of the engineering environment, we can add the specific components for the

example here.

First of all we need to download the RasPi Solution from the 3S web shop. This solution is distrib-

uted as a package that needs to be added to the engineering environment via the package man-

ager in the Tools menu (see Figure 4).

Figure 3 Additional components installed by the CODESYS engineering environment

Faulhaber Application Note 164 Page 6 of 37

You might also download and add the OSCAT Basic lib, a library with general purpose function

blocks for the CODESYS environment. We do use one of them later in the listing.

The lib can then be installed using the Tools/LibraryRepository.

Figure 4 CODESYS Package manager allows to add additional components such as the

RasPi environment

Figure 5 Installation of additional libraries using the LibraryRepository

Faulhaber Application Note 164 Page 7 of 37

Only after this step, we are now able to install the

CODESYS runtime component at the RasPi. This instal-

lation is done directly out of the CODESYS runtime envi-

ronment. There is an extra menu entry in the Tools menu

Update Raspberry). This will open up a window where

you have to identify your RasPi (IPAddress) and add the

login information.

Figure 6 Update Raspberry

Press Scan to identify the RasPis is your network environ-

ment. Alternatively add the IPAddress manually.

Add the login information or the RasPis SSH. Default is:

Username: pi

Password: raspberry

Finally, in order to use the FAULHABER MCs in CODESYS projects, the device description files

distributed with the MotionManager have to be installed to the CODESYS Device Repository –

once again the Tool menu. The description files can be found in the installation directory of the

MotionManager/ESI, e.g. something like C:\Program Files (x86)\Faulhaber\Motion Manager 6\ESI.

Faulhaber Application Note 164 Page 8 of 37

After this final step all the prerequisites are finished. We can now start with the application exam-

ple.

Figure 7 Adding FAULHABER MotionController to the CODESYS Device Repository

Faulhaber Application Note 164 Page 9 of 37

Create a new PLC application

Creation of a PLC application requires a minimum of 4 steps.

1. Open a new PLC project

2. Create a system description

3. Add the functionality

4. Test the system behavior

Open a new project

A new CODESYS project can be created using either the direct link in the Start Page or via menu

File/New Project.

Here we use a Standard project. Select whatever path is convenient and enter a project name.

In a second step the target type and programming type for the single program organization unit

(POU) PLC_PRG are selected (see Figure 9).PLC_PRG is part of the new project and already

configured to be executed by the main task.

Here we choose structured text (ST), a text based coding very similar to PASCAL.

Figure 8 Open an new CODESYS project

Faulhaber Application Note 164 Page 10 of 37

Finally the new project is displayed in the project tree (see Figure 11). Listed under the Device

node (which represents the RasPi PLC controller) there is one node for the PLC_Logic. All other

ones are empty.

Within the 3S startup manual for the RasPi solution several simple examples in combination with

different types of I/O connected to the RasPi are explained. Here we will focus on a simple system

out of the RasPi and a single FAULHABER MC 50xx connected via EtherCAT (Figure 1).

In our example the Ethernet port of the RasPi is directly connected to the EtherCAT port labeled

IN at the MotionController. No additional connection is necessary.

Figure 9 Selection of the target runtime and the programing style

Figure 10 Connections of a FAULHABER MotionController MC5005/10 S ET

Faulhaber Application Note 164 Page 11 of 37

Connect to the Device

The CODESYS Development System can generate code for different targets. In order to tailor the

configuration to the selected target your RasPi should be added to the project in a first step. To do

this, a double-click on the device node in the project tree will open the device page (Figure 12)

from where the network can be scanned for devices. Several CODESYS runtime systems might

be identified. RasPi based targets cannot be identified by a blinking LED or something similar.

One of the properties of the identified devices is the Device_Name. So if you plan to use several

of them, you should use different names here1.

The settings of the connected device are displayed on the device page after this step only (see

Figure 13).

1 Targets can be renamed using the Device menu in the Device settings page.

Figure 11 Project view in the CODESYS environment

Project tree Detailed settings and editor

Faulhaber Application Note 164 Page 12 of 37

Figure 12 Identify the target controller (RasPi)

Figure 13 Project view with identified target controller

Faulhaber Application Note 164 Page 13 of 37

Create the system definition offline

Before we start programming the application, we should create a complete system definition. Here

we need to add the EtherCAT subsystem. Additional examples of how to add drivers for SPI or I²C

based subsystems can be found directly in the 3S startup description.

Additional components can be added to the project using the context menu in the project tree.

Here the master is added to the node Device using Add Device. First we need to add the driver for

the EtherCAT – the EtherCAT Master - using add Device out of the context menu of the project.

Available devices can be selected from the Add Device window using filters and the tree view. As

of now, there is only one EtherCAT master, so this is an easy one.

A double-click on the tree node of the EtherCAT master will open the settings of the component

(Figure 15).

Next we need to configure the network interface to be used by the EtherCAT master at the target

controller. A list of available network interfaces can be displayed by clicking the Browse … button

(Figure 15). Here we have to select the single Ethernet port of the target: eth0. The identification

within the project can be either MAC based or name based. The latter allowing for easier portabil-

ity of the project.

The cycle time of the EtherCAT system defaults to the cycle time of the main task. For the RasPi

this is 4ms. We did test cycle times down to 2ms successfully with either a RasPi 2B or 3B target2.

2 If a different timing is required, first change the cyclic time of the main task, then adjust the Cycle

Time of the EtherCAT and re-compile / re-load the system.

Figure 14 Add the EtherCAT Master to the project using Add Device

Faulhaber Application Note 164 Page 14 of 37

After the basic configuration of the EtherCAT subsystem we can add slaves to the system. This

can either be done offline, by manually adding devices to the EtherCAT bus node or using the

online Config Mode being available either from the context menu of the device in the project

tree or out of the menu. Online Config will start the EtherCAT system configured in the last step

and will scan the bus for known devices. Online Config avoids picking the wrong device or device

revision.

In offline mode, you need to add the devices manually using the Add Device entry of the Ether-

CAT master context menu. When using offline mode, please verify to have the correct device

types and revision added to your project (Figure 16).

By default Vendor ID and product ID of the nodes are checked during startup

of the EtherCAT subsystem. So even if a MC 5010 S ET and a MC 5005 S ET

look very similar, they must not be mixed up here. Product revision is not

checked by default, however in order to avoid communication problems the

correct device description should be selected in offline mode.

Online mode even allows updating the contents of the EtherCAT slave EEPROM. This has to be

done manually after a firmware update of the MC3.

3 A firmware update may add objects to the object dictionary of a servo drive. In order to correctly

access all objects, the correct device description has to be used within the project. The device

revision of an EtherCAT drive is identified via the device revision entry in the slave EEPROM.

Figure 15 EtherCAT Master settings and list of available network adapters

Faulhaber Application Note 164 Page 15 of 37

The configuration of the EtherCAT slave is done entirely using the slave set-

tings of the MC node in the CODESYS Development System (see Figure 17).

No configuration via FAULHABER MotionManager is necessary.

Review and modify the settings of the connected MC 5005 by double-click on the node MC5005 in

the project tree an enable the expert settings. Expert settings are necessary to modify the PDO

mappings of the device.

Figure 16 List of known devices

Faulhaber Application Note 164 Page 16 of 37

By default Distributed Clock is used as synchronization method for the FAULHABER drives. Acti-

vate the configuration entries for MC 5005 and enable ‘Expert Mode’ as in Figure 17. To enable

the Distributed Clock at the MC please check the entries at the General Tab according to Figure

18.

If Synchmanager (SM) synchronous operation is to be used, use the context menu of the MC

5005-OpMode in the project tree to change the plugged OpMode.

Of course, synch cycle times of the slave and of the application must be the same, here it is 4ms

= 4000µs.

Figure 17 Basic EtherCAT Slave settings of the CODESYS system – expert settings ena-

bled

Faulhaber Application Note 164 Page 17 of 37

Figure 18 Synch settings of the EtherCAT slave

Faulhaber Application Note 164 Page 18 of 37

Create / Modify PDO Mapping

In order to tailor the data exchange between the PLC application and the MotionController to the

application we need to review and configure the process data objects (PDO) of the drive using the

Expert Process Data Tab of the drive settings.

A maximum of 4 objects can be mapped to a single PDO.

To maintain the correct order of processing the controlword (0x6040.00), the

OpMode (0x6060.00) and the target position (0x607A.00) have to be mapped to

a single PDO. The controlword must not be mapped to more than 1 active PDO.

Within the default mapping the controlword is mapped to all RxPDOs, RxPDO 2 – 4 each covering

a different simple access of controlword and the target value for either pos control (RxPDO2),

speed control (RxPDO3) or torque control (RxPDO4). Same for the Tx direction. To avoid a mixed

update of the controlword, only PDO2 is activated by default.

Figure 19 Expert view of the PDOs (defaults)

Faulhaber Application Note 164 Page 19 of 37

Here we want to access:

Read Write

0x6041.00 statusword 0x6040.00 controlword

0x6061.00 Modes Of Op. Display 0x6060.00 Modes of Operation

0x6064.00 Position Actual Value 0x607A.00 Target Position

0x606C.00 Velocity Actual Value 0x6081.00 Profile Velocity

0x6077.00 Torque Actual Value 0x6083.00 Profile Acceleration

0x2311.01 Dig Input logic state 0x6084.00 Profile Deceleration

So the PDO Mapping here might be:

Read from the MC Write to the MC

TxPDO1: not used, no change necessary RxPDO1: not used, no change necessary

TxPDO2:

1. 0x6041.00 (statusword)
2. 0x6061.00 (Modes of Op Display)
3. 0x2311.01 (Dig Input logic state)
4. -

RxPDO2:

1. 0x6040.00 (controlword)
2. 0x6060.00 (Modes of Operation)
3. 0x607A.00 (Target Position)
4. –

TxPDO3:

1. 0x6064.00 (Position actual value)
2. 0x606C.00 (Velocity actual value)
3. 0x6077.00 (Torque actual value)
4. -

RxPDO3:

1. 0x6081.00 (Profile Velocity)
2. 0x6083.00 (Profile Acceleration)
3. 0x6084.00 (Profile Deceleration)
4. -

TxPDO4: not used, no change necessary RxPDO4: not used, no change necessary

To edit the mappings the 4 tables in the Expert Process Data tab can be used.

Table 2 List of all parameters used in the interaction between PLC and servo drive

Table 3 Proposed PDO mapping

Faulhaber Application Note 164 Page 20 of 37

Edit the RxPDOs:

1. Select the Outputs in the Synch Manager table and enable RxPDO3 by checking it in the PDO As-

signment

2. Select RxPDO2 in the PDO List

3. Add a new entry to RxPDO2 in the PDO Content table using the Insert. Here we add 0x6060.00

Modes of Operation to the mapped entries.

4. If necessary the order of the objects can be modified using the Move up or Move down buttons

5. Select RxPDO3 in the PDO List

6. Delete the default entries (controlword, target velocity) using the Delete and add 0x6081.00 -

Profile Velocity, 0x6083.00 – Profile Acceleration and 0x6084.00 – Profile Deceleration.

7. Enable additional PDO3 by checking them in the PDO Assignment table

 The total size of the Outputs in the Synch Manager table should now be 19 bytes

Edit the TxPDOs:

1. Select the Inputs in the Synch Manager table and enable TxPDO3 by checking it in the PDO As-

signment

2. Select TxPDO2 in the PDO List

3. Add 0x6061.00 - Modes of Operation Display to the mapped entries

4. Add 0x2311.01 – Digital Input Logic States to the mapped entries

5. Delete 0x6064.00 – Position actual value from TxPDO2

Figure 20 Expert view of the device PDOs, adjusted to Table 3

 



Faulhaber Application Note 164 Page 21 of 37

6. If necessary the order of the objects can be modified using the Move up or Move down buttons

7. Select TxPDO3 in the PDO List

8. Delete the default entries of the 0x6041.00 statusword and add 0x6064.00 – Position actual value,

0x6077.00 – Torque actual value.

9. Enable additional PDO3 by checking them in the PDO Assignment table

 The total size of the Inputs in the Synch Manager table should now be 14 bytes

There is no need to explicitly configure the mappings beforehand in the MC us-

ing FAULHABER MotionManager because the PDO assignment and mappings

are downloaded to the MC by the PLC during initialization.

Different from the CANopen environment we don’t have to care about the transmission type of

PDOs they will be updated in every communication cycle anyway.

Additional configuration of the MC

To configure the correct motor or the I/Os of the MC please use FAULHABER

MotionManager and the secondary interface of the MC which is either the USB

interface for an external controller or the RS232 of an MCS. This configuration is

mandatory before the motor is operated by the PLC.

Faulhaber Application Note 164 Page 22 of 37

Create a PLC program

By default the program sequence of the project is stored in the PLC_PRG component of the pro-

ject tree. Here it is a structured text (ST) version. Structured text is similar to PASCAL. A double-

click on the PLC_PRG entry of the tree opens the editor tab.

The editor is divided into the variables section and the code section. All variables and instances of

function blocks have to be defined in the variables section in between the key words.

Definition of global variables

VAR

…

END_VAR

So if we want to interact with the MC we usually have to read the statusword and write the con-

trolword. Both of them unsigned 16 bit.

The entries would look like:

VAR

 ControlWord: UINT:=0;

 StatusWord: UINT;

END_VAR

The variable ControlWord is set using a default value, StatusWord does not need a default value,

it’s updated out of the controller anyway.

Variables can also be created on the fly during coding. Each time a new variable name is used a

window will pop up and gather the necessary attributes.

Map PLC variables to the process image

Please note: the listing above does only generate the two variables for the PLC program. In order

to access the MC the two variables have to be linked to the PDOs. This can be done using the

EtherCAT I/O Mapping tab of the MC node in the project tree. A double-click into one of the varia-

bles (empty or already connected) will allow to select a new variable.

So here we should map the entry controlword in RxPDO2 to the PLC variable ControlWord and

the statusword entry in TxPDO2 to the PLC variable StatusWord:

Faulhaber Application Note 164 Page 23 of 37

Access to a single bit within the ControlWord/StatusWord

Sometimes we need to access a single bit within a variable and want to ignore the others. This

can be done e.g. for the flags TargetReached (bit 10) and SetPointAcknowledge (bit 12) of the PP

mode using the .Bit operator. The result is a Boolean information.

//Flags of the PP mode

IsInPos := StatusWord.10;

SetPointAck := StatusWord.12;

Add additional libs to the project

If available it’s recommended to rely on existing, proven code. This can be done using libraries.

The OSCAT Basic lib installed earlier supplies some general purpose function blocks and should

be added to the project. This is done using the Library Manager entry of the project tree. Once

again a double-click will open the view where we can add a library. Filters are supported.

Figure 21 Mapping dialog - select the application variable to be updated by / to update the

PDO

Faulhaber Application Note 164 Page 24 of 37

Download and start the application

After having entered the code, the application can be compiled using either the Build menu, the

build-icon or F11.

A successfully built application can be downloaded to the PLC using Online/Login (or the login

icon). The application is downloaded but will remain stopped until we explicitly start it using De-

bug/Start or the start icon.

Figure 22 CODESYS LibraryManager

Figure 23 Debugging view of PLC_PRG - Application still stopped

Faulhaber Application Note 164 Page 25 of 37

Startup of the EtherCAT subsystem will take a few moments. If the EtherCAT

does not start up after a download/start a reset of the controller (Online/Reset

warm) might help. Otherwise please check, whether the device in the project

really is the one connected to EtherCAT.

We can logout again using Online/Logout. The application can be explicitly stopped and restarted

using the Debug menu.

Please note: The downloaded application will remain in the RasPi environment. It will be restarted

automatically after the next reset of the RasPi.

Figure 24 Debugging view of PLC_PRG - Application running

Faulhaber Application Note 164 Page 26 of 37

Example Application

Overview

The purpose here is to start the drive in reaction to a digital input and cyclically move between two

positions while also cyclically changing the profile parameters for acceleration and deceleration.

The used OpMode is ProfilePosition Mode (0x6060.00 = 1).

This requires enabling the controller in a first step and then sending the target positions, waiting

for being in position and updating the profile parameters. So there are several steps to be taken. A

well suited solution pattern for such a problem is a step sequence. A step sequence is a pattern,

where only a part of the PLC program is executed in each update cycle, depending of the step in

which the program is. There is a special diagram to design these step sequences: sequential func-

tion chart (SFC). Here however we use ST and implement the step sequence using a

If (StepVariable = xxx) Then

…

ELSEIF (StepVariable = xxx) Then

…

END_IF

Implement the steps.

Each step may have actions to be taken only at the entry into a step, code to be executed while

within a step and actions to be taken when switching to the next step. Obviously there should also

be a condition when to switch to the next step. And there can be different conditions to branch into

different next steps.

Examples on how to create a step sequence in a

CODESYS environment using sequential function

chart (SFC) can be found at www.youtube.com.

The main sequence of this application is shown in the flowchart of Figure 26. After preprocessing

the inputs (control word and digital inputs) a first step sequence deals with the finite state machine

of the servo drive according to CiA 402.

The control word is used to step the MotionController from the initial disabled state to fully opera-

tional state. The commands in the controlword depend on the statusword received from the drive

unit.

The main idea is: If we have been in disabled state (stored in the variable DriveEnabled) and the

enable switch at the discrete I/Os (DigIn1) of the MotionController is pressed, we send a se-

quence of enabling commands to the MotionControllers controlword. Steps are taken depending

on the state signaled by the statusword.

Faulhaber Application Note 164 Page 27 of 37

On the other hand, if we are already enabled and receive a disable command from DigIn2, send a

shutdown command to the controller to disable the operation once again.

Only after the state machine reached the operation enabled state, the DriveEnabled variable is set

to true and the second step sequence for updating the position references is executed.

So finally – when the drive is enabled – the position references are sent to the drive. The first posi-

tion reference of a sequence is always sent as an immediate value – which will be processed by

the drive without waiting for any earlier commands to be finished. All subsequent references are

sent only if the previous one has been reached.

Again there is a handshake between the PLC and the MotionController using bits in the con-

troword and the statusword. The handshake between the PLC and the servo drive is shown in

Figure 25. After a new reference position has been set in 0x607A.00 Target Position the New Set-

point bit in the controlword 0x6040.00 has to be set (in fact a rising edge is required to start the

move). Only after this rising edge is received by the drive the new reference is acknowledged via

the setpoint acknowledge bit in the statusword and the drive starts the move. It is Important to

release the New Setpoint bit once again to create a next rising edge for the next position.

If the new setpoint is flagged as an immediate one (bit 5 of the controlword), the new command is

immediately executed even if a previous command is still ongoing. This feature is used here for

the very first command.

All subsequent commands are sent, only if the drive has reached the previous target position and

signaled this by setting the Target Reached bit in the statusword.

So once again a step sequence is well suited to organize the different steps of this interaction.

ControlWord Bit 4 (New SetPoint)

StatusWord Bit 12 (SetPoint Acknowledge)

t

t

Figure 25 Handshaking sequence between the PLC (ControlWord) and the servo drive (Sta-

tusWord)

Faulhaber Application Note 164 Page 28 of 37

Figure 26 Step sequence

of the demo application

Set RefPos to Default

Step = 0

Step = 1

DriveEnabled = True

Step = 2

[State = 0x40 (switch on disabled)] / Send Shutdown

[State = 0x21 (read to switch on)] / Send operation Enable

StepPos = 0

StepPos = 1

[SetPointAck = False] / Start new move (CW = 0x001F)
non immediate

[FirstRef = true] / Start new immediate move (CW = 0x003F)

StepPos = 2

Wait for Drive is in Pos
Then update profile

parameters

StepPos = 3

[SetPointAck = True]

[SetPointAck = False] /Reset Start Bit (CW = 0x000F)

[Drive is InPos]

StepPos = 0

Faulhaber Application Note 164 Page 29 of 37

Listing

Variables

This part is displayed in the upper part of the editor window and holds the definition of all variable

instances.

VAR

 ControlWord: UINT:=0;

 StatusWord: UINT;

 RefPos : DINT:= 0;

 ActPos : DINT;

 OpMode : BYTE := 1;

 Acc: DINT:=10;

 Dec: DINT:=10;

 ProfileSpeed: DINT:= 5000;

 DriveEnable : BOOL:= FALSE;

 FSMState: BYTE;

 IsInPos: BOOL;

 SetPointAck: BOOL;

 DriveEnabled: BOOL:=FALSE;

 DigitalInputs : BYTE;

 DriveEnInput : BOOL;

 DriveEnLast : BOOL := FALSE;

 DriveDiInput : BOOL;

 DriveDiLast : BOOL := FALSE;

 FirstRef: BOOL:=TRUE;

 StepEn: INT:=0;

 StepPos: INT:=0;

 AccDecSlope: INT:=0;

END_VAR

VAR CONSTANT

 MaxAccDec:DINT:=500;

 MinAccDec:DINT:=50;

 DeltaAccDec:DINT:=10;

END_VAR

Faulhaber Application Note 164 Page 30 of 37

Code

The code is displayed in the lower part of the editor window and contains the functional logic of

the application.

//extract the different parts of information out of the status word

//StatusLowByte is used for switching the CiA 402 State machine

FSMState := WORD_TO_BYTE(StatusWord);

//Flags of the PP mode

IsInPos := StatusWord.10;

SetPointAck := StatusWord.12;

//eval the digital inputs which have been received from the MC

//and switch between enabled and disabled drive

DriveEnInput := DigitalInputs.0;

DriveDiInput := DigitalInputs.1;

//drive is to enabled after a rising edge at In1

//drive is to be disabled after a rising edge at In2

IF (DriveEnInput AND NOT DriveEnLast) THEN

 DriveEnable := TRUE;

ELSIF (DriveDiInput AND NOT DriveDiLast) THEN

 DriveEnable := FALSE;

END_IF

//Store the flags to detect edges in the next step

DriveEnLast := DriveEnInput;

DriveDiLast := DriveDiInput;

//step through the CiA 402 drive state machine

//implemented as a step sequence station at StepEn = 0

IF (DriveEnable) THEN

 IF (StepEn = 0) THEN

 RefPos:=10000;

 IF (FSMState = 16#40) THEN

 //if state is switch on disabled, send the switch on

 ControlWord := 16#0006;

 StepEn := 1;

 END_IF

 ELSIF (StepEn = 1) THEN

 IF (FSMState = 16#21) THEN

 //if state is switched on, send enable operation

 ControlWord := 16#000F;

 StepEn := 2;

 END_IF

 ELSIF (StepEn = 2) THEN

 IF (FSMState = 16#27) THEN

//if state is operation enabled, denote the drive

//being enabled

 DriveEnabled := TRUE;

Faulhaber Application Note 164 Page 31 of 37

 END_IF

 END_IF

ELSE

 //drive shall be switched of or stay switched of

 //reset all variables to default values

 ControlWord := 0;

 StepEn := 0;

 DriveEnabled := FALSE;

 StepPos := 0;

 FirstRef := TRUE;

END_IF

//step sequence with the different position commands in PP mode

//first command is issued immediate

//the following commands are issed after having reached the previous target

//PP steps are sent only, if drive is enabled

IF (DriveEnabled) THEN

//step 0: signal a new ref. This is either the default start value

// set during enabling the drive

 //or the one calculated in StepPos step 3

 IF (StepPos = 0) THEN

//if this is the first step after boot, this is sent flagged

//as an immediate reference

 IF (FirstRef) THEN

 ControlWord := 16#003F;

 StepPos := 1;

 FirstRef := FALSE;

 ELSE

 //otherwise (not the first step) this a non immediate ref

 IF (SetPointAck) THEN

//new ref has been acknowleged, so reset the

//new setpoint flag until the acknowledge is reset

 ControlWord := 16#000F;

 ELSE

//signal the new ref and step to the next step

// only, if the Ack Bit has not been set

 ControlWord := 16#001F;

 StepPos := 1;

 END_IF

 END_IF

 ELSIF (StepPos = 1) THEN

//last action in step 0 was, to signal the new ref, so we have

// to wait, until the ref has been acknowlegded

 //waiting for acknowledge of pos

 //only then we can switch to the next step

 IF (SetPointAck) THEN

 StepPos := 2;

 END_IF

 ELSIF (StepPos = 2) THEN

Faulhaber Application Note 164 Page 32 of 37

//setpoint has been acknowlegeded, new setpoint bit can be

// reset now

 //we should wait until the ack bit has been reset too

 ControlWord := 16#000F;

 IF (NOT SetPointAck) THEN

 StepPos := 3;

 END_IF

 ELSIF (StepPos = 3) THEN

 //wait for InPos

 IF (IsInPos) THEN

 //new pos has been reached

//now inivert the ref and change the profile parameters

// for the next step

 RefPos :=(-RefPos);

 //update profile Values

 IF (AccDecSlope > 0) THEN

 //we are still accelerating

 IF (Acc < (MaxAccDec - DeltaAccDec)) THEN

 Acc := Acc + DeltaAccDec;

 Dec := Acc;

 ELSE

 AccDecSlope := 0;

 END_IF

 ELSE

 //we slow down the dynamic

 IF (Acc > (MinAccDec + DeltaAccDec)) THEN

 Acc := Acc - DeltaAccDec;

 Dec := Acc;

 ELSE

 AccDecSlope := 1;

 END_IF

 END_IF

//new profile values are calculated,

//we do now reset the sequence

 StepPos := 0;

 END_IF

 END_IF

END_IF

Faulhaber Application Note 164 Page 33 of 37

Assignment of PLC variables to the process image

Variants

Add a homing sequence

The example above was about doing position control using PP mode. However there was no hom-

ing sequence used to reset the actual positon to a defined position.

Different types of homings are available for the FAULHABER MotionController. Here we might use

homing on a lower limit switch: 0x6098.00 homing method = 17. As the homing method usually

does not change for a given application the method can be set via the MotionManager during sys-

tem configuration and saved as a part of the systems application parameters.

However we need to add some additional steps in our sequence:

1. Switch OpMode to 0x6060.00 = 6: Homing

2. Start the homing sequence by setting the start bit in the controlword 0x6040.00

0x6040.00  ControlWord = 0x00 1F

3. Wait for the homing being finished successfully by monitoring Bit 12 in the statusword 0x6041.00

if(0x6041.00 → StatusWord.12 = true) Then …

4. Save the successfully executed homing in a local flag,

switch OpMode to 0x6060.00 = 1 (PP) and

start the UpdatePosition sequence according to Figure 26

As we already covered the OpMode in the mappings of Table 3 we don’t even need to edit the

PDO mappings in this step.

Faulhaber Application Note 164 Page 34 of 37

EEPROM Update

As mentioned the revision number stored in the EtherCAT slave (ESC) EEPROM should be iden-

tical to the revision of the firmware. Therefore after a FW update it is necessary to update the data

stored in the ESC EEPROM too.

This can be done, when being connected to a running application or using the Online Config

mode. In both cases the update is done using the Online tab of the MotionController settings.

Simply press Write EEPROM XML will download the information out of the XML file used during

system definition step.

Adding a Visualization

CODESYS allows easily adding a target visualization. Examples can be found at youtube. Visuali-

zation is added via the context menu off the Application (Figure 27). The visualization is then add-

ed as a separate component to the application tree (Figure 28). A separate task is created also in

this step.

The controls for numeric values, switches or lamps can then be added and edited via drag and

drop out of the visualization toolbox. Of course, you will need to connect them to variables of the

application. This is a convenient way to add a user interface even if no external switches are

available in a demo environment. The visualization can both be displayed and used in the

CODESYS engineering environment or directly using a web browser:

The target address is <IP number of the target controller>:8080/webvisu.htm e.g.:

192.168.0.45:8080/webvisu.htm

Faulhaber Application Note 164 Page 35 of 37

Figure 27 Add a visualization to an application

Figure 28 Application tree of a demo unit having target visualization

Faulhaber Application Note 164 Page 36 of 37

Additional Resources

FAULHABER Application Notes

App-Note 150 How to control a FAULHABER MC V3.0 ET using TwinCAT

App Note 154 Updating the EtherCAT slave EEPROM using TwinCAT

FAULHABER motion controllers:

https://www.faulhaber.com/en/products/drive-electronics/motion-

controllers/

FAULHABER motion demos at Youtube:

https://www.youtube.com/playlist?list=PLt9bbvNtjYyiKxuh_XtoYGB5Zx2

q04k3D

https://www.faulhaber.com/en/products/drive-electronics/motion-controllers/
https://www.faulhaber.com/en/products/drive-electronics/motion-controllers/
https://www.youtube.com/playlist?list=PLt9bbvNtjYyiKxuh_XtoYGB5Zx2q04k3D
https://www.youtube.com/playlist?list=PLt9bbvNtjYyiKxuh_XtoYGB5Zx2q04k3D

Faulhaber Application Note 164 Page 37 of 37

Rechtliche Hinweise

Urheberrechte. Alle Rechte vorbehalten. Ohne vorherige ausdrückliche schriftliche Genehmigung der Dr.

Fritz Faulhaber & Co. KG darf insbesondere kein Teil dieser Application Note vervielfältigt, reproduziert, in

einem Informationssystem gespeichert oder be- oder verarbeitet werden.

Gewerbliche Schutzrechte. Mit der Veröffentlichung der Application Note werden weder ausdrücklich noch

konkludent Rechte an gewerblichen Schutzrechten, die mittelbar oder unmittelbar den beschriebenen An-

wendungen und Funktionen der Application Note zugrunde liegen, übertragen noch Nutzungsrechte daran

eingeräumt.

Kein Vertragsbestandteil; Unverbindlichkeit der Application Note. Die Application Note ist nicht Ver-

tragsbestandteil von Verträgen, die die Dr. Fritz Faulhaber GmbH & Co. KG abschließt, soweit sich aus

solchen Verträgen nicht etwas anderes ergibt. Die Application Note beschreibt unverbindlich ein mögliches

Anwendungsbeispiel. Die Dr. Fritz Faulhaber GmbH & Co. KG übernimmt insbesondere keine Garantie

dafür und steht insbesondere nicht dafür ein, dass die in der Application Note illustrierten Abläufe und Funk-

tionen stets wie beschrieben aus- und durchgeführt werden können und dass die in der Application Note

beschriebenen Abläufe und Funktionen in anderen Zusammenhängen und Umgebungen ohne zusätzliche

Tests oder Modifikationen mit demselben Ergebnis umgesetzt werden können.

Keine Haftung. Die Dr. Fritz Faulhaber GmbH & Co. KG weist darauf hin, dass aufgrund der Unverbind-

lichkeit der Application Note keine Haftung für Schäden übernommen wird, die auf die Application Note

zurückgehen.

Änderungen der Application Note. Änderungen der Application Note sind vorbehalten. Die jeweils aktuel-

le Version dieser Application Note erhalten Sie von Dr. Fritz Faulhaber GmbH & Co. KG unter der Telefon-

nummer +49 7031 638 345 oder per Mail von mcsupport@faulhaber.de.

Legal notices

Copyrights. All rights reserved. No part of this Application Note may be copied, reproduced, saved in an

information system, altered or processed in any way without the express prior written consent of Dr. Fritz

Faulhaber & Co. KG.

Industrial property rights. In publishing the Application Note Dr. Fritz Faulhaber & Co. KG does not ex-

pressly or implicitly grant any rights in industrial property rights on which the applications and functions of

the Application Note described are directly or indirectly based nor does it transfer rights of use in such in-

dustrial property rights.

No part of contract; non-binding character of the Application Note. Unless otherwise stated the Appli-

cation Note is not a constituent part of contracts concluded by Dr. Fritz Faulhaber & Co. KG. The Applica-

tion Note is a non-binding description of a possible application. In particular Dr. Fritz Faulhaber & Co. KG

does not guarantee and makes no representation that the processes and functions illustrated in the Applica-

tion Note can always be executed and implemented as described and that they can be used in other con-

texts and environments with the same result without additional tests or modifications.

No liability. Owing to the non-binding character of the Application Note Dr. Fritz Faulhaber & Co. KG will

not accept any liability for losses arising in connection with it.

Amendments to the Application Note. Dr. Fritz Faulhaber & Co. KG reserves the right to amend Applica-

tion Notes. The current version of this Application Note may be obtained from Dr. Fritz Faulhaber & Co. KG

by calling +49 7031 638 345 or sending an e-mail to mcsupport@faulhaber.de.

	Codesys and FAULHABER V3.0 EtherCAT
	Summary
	Applies To
	Licensing
	Related FAULHABER Documents

	Description
	Software Installation
	Install and configure the RasPi
	Install the CODESYS Environment

	Create a new PLC application
	Open a new project
	Connect to the Device
	Create the system definition offline
	Create / Modify PDO Mapping
	Additional configuration of the MC

	Create a PLC program
	Map PLC variables to the process image
	Access to a single bit within the ControlWord/StatusWord
	Add additional libs to the project
	Download and start the application

	Example Application
	Overview
	Implement the steps.
	Listing
	Variables
	Code
	Assignment of PLC variables to the process image

	Variants
	Add a homing sequence
	EEPROM Update
	Adding a Visualization

	Additional Resources

